Skip to main content
Log in

Global dynamical aspects of a generalized Chen–Wang differential system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study theoretically the global chaotic behavior of the generalized Chen–Wang differential system

$$\begin{aligned} \dot{x} = y, \quad \dot{y} = z,\quad \dot{z} = -y - b x^2 - x z + 3 y^2 + a, \end{aligned}$$

where \(a,b \in {\mathbb {R}}\) are parameters and \(b\ne 0\). This polynomial differential system is relevant because is the first polynomial differential system in \({\mathbb {R}}^3\) with two parameters exhibiting chaotic motion without having equilibria. We first show that for \(a>0\) sufficiently small it can exhibit up to three small amplitude periodic solutions that bifurcate from a zero-Hopf equilibrium point located at the origin of coordinates when \(a=0\). We also show that the system exhibits two limit cycles emerging from two classical Hopf bifurcations at the equilibrium points \(({\pm }\sqrt{2a}, 0,0)\), for \(a>0, b=1/2\). We also give a complete description of its dynamics on the Poincaré sphere at infinity by using the Poincaré compactification of a polynomial vector field in \({\mathbb {R}}^3\), and we show that it has no first integrals neither in the class of analytic functions nor in the class of Darboux functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baldomá, I., Seara, T.M.: Breakdown of heteroclinic orbits for some analytic unfoldings of the hopf-zero singularity. J. Nonlinear Sci. 16, 543–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldomá, I., Seara, T.M.: The inner equation for generic analytic unfoldings of the hopf-zero singularity. Discrete Contin. Dyn. Syst. Ser. B 10, 232–347 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Broer, H.W., Vegter, G.: Subordinate Shilnikov bifurcations near some singularities of vector fields having low codimension. Ergod. Theory Dyn. Syst. 4, 509–525 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, J., Zhang, X.: Dynamics of the Lorenz system having an invariant algebraic surface. J. Math. Phys. 48, 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cima, A., Llibre, J.: Bounded polynomial vector fields. Trans. Am. Math. Soc. 318, 557–579 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. Pac. J. Math. 229, 63–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Champneys, A.R., Kirk, V.: The entwined wiggling of homoclinic curves emerging from saddle-node/Hopf instabilities. Phys. D: Nonlinear Phenom. 195, 77–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dias, F., Mello, L.F., Zhang, Jian-Gang: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real World Appl. 11, 3491–3500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Universitext. Springer, New York (2006)

    MATH  Google Scholar 

  10. Falconi, M., Llibre, J.: \(n-1\) independent first integrals for linear differential systems in \({\mathbb{R}}^n\) and \({\mathbb{C}}^n\). Qual. Theory Dyn. Syst. 4, 233–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guckenheimer, J.: On a Codimension Two Bifurcation, Dynamical Systems and Turbulence. Warwick, Coventry (1979/1980), vol. 898, Lecture Notes in Math., no. 654886 (83j:58088), Springer, Berlin, 1981, 99–142 (1980)

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, Berlin (2002)

    MATH  Google Scholar 

  13. Han, M.: Existence of periodic orbits and invariant tori in codimension two bifurcations of three-dimensional systems. J. Syst. Sci. Math. Sci. 18, 403–409 (1998)

    MathSciNet  MATH  Google Scholar 

  14. Kokubu, H., Roussarie, R.: Existence of a singularly degenerate heteroclinic cycle in the Lorenz system and its dynamical consequences. J. Dyn. Differ. Equ. 16, 513–557 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuznetsov, YuA: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 12, 3rd edn. Springer, New York (2004)

    Book  MATH  Google Scholar 

  16. Llibre, J., Messias, M., da Silva, P.: On the global dynamics of the Rabinovich system. J. Phys. A 41, 275210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llibre, J., Messias, M.: Global dynamics of the Rikitake system. Phys. D 238, 241–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Llibre, J., Messias, M., da Silva, P.: Global dynamics of the Lorenz system with invariant algebraic surfaces. Int. J. Bifurc. Chaos 20, 3137–3155 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Llibre, J., Oliveira, R., Valls, C.: Integrability and zero-Hopf bifurcation of a Chen–Wang differential system. Nonlinear Dyn. 80, 353–361 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre, J., Zhang, X.: Darboux theory of integrability in \({\mathbb{C}}^n\) taking into account the multiplicity. J. Differ. Equ. 246, 541–551 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Llibre, J., Zhang, X.: Darboux theory of integrability for polynomial vector fields in \({\mathbb{R}}^n\) taking into account the multiplicity at infinity. Bull. Sci. Math. 133, 765–778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system, Internat. Int. J. Bifurc. Chaos 14, 1507–1537 (2004)

    Article  MATH  Google Scholar 

  23. Mello, L.F., Messias, M., Braga, D.C.: Bifurcation analysis of a new Lorenz-like chaotic system. Chaos Solitons Fractals 37, 1244–1255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Messias, M.: Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system. J. Phys. A 42, 115101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems. Applied Mathematical Sciences, vol. 59, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  26. Scheurle, J., Marsden, J.: Bifurcation to quasi-periodic tori in the interaction of steady state and Hopf bifurcations. SIAM J. Math. Anal. 15, 1055–1074 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Velasco, E.A.G.: Generic properties of polynomial vector fields at infinity. Trans. Am. Math. Soc. 143, 201–221 (1969)

  28. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Universitext. Springer, Berlin (1991)

    MATH  Google Scholar 

  29. Wang, X., Chen, G.: Constructing a chaotic system with any number of equilibria. Nonlinear Dyn. 71, 429–436 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The first author is partially supported by the Project FP7-PEOPLE-2012-IRSES Number 316338, a CAPES Grant Number 88881.030454/2013-01 and Projeto Temático FAPESP Number 2014/00304-2. The second author is supported by FCT/Portugal through the Project UID/MAT/04459/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regilene Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, R., Valls, C. Global dynamical aspects of a generalized Chen–Wang differential system. Nonlinear Dyn 84, 1497–1516 (2016). https://doi.org/10.1007/s11071-015-2584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2584-1

Keywords

Mathematics Subject Classification

Navigation