Skip to main content
Log in

Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper was to study the dynamic response of a single-degree-of-freedom (SDOF) oscillator exited by a base acceleration and constrained by two unilateral constraints (bumpers). The coupled equations of motion are formulated in dimensional and dimensionless form for the case in which both SDOF oscillator and bumpers exhibit a nonlinear behavior. Two possible states characterize the system’s response: flight, when the mass of the oscillator is not in contact with the bumper, and contact, when the mass touches the bumper. When the system is in the flight state, the independent time evolution of the bumpers’ response is also considered in equations of motion. In the numerical investigations, a viscoelastic SDOF oscillator and viscoelastic perfectly plastic bumpers subjected to a harmonic base excitation are considered. First, the transient versus steady-state dynamic response is considered, and afterward the only steady-state dynamic response is studied by means of pseudo-resonance curves of maximum absolute acceleration and relative displacement excursion of the SDOF oscillator. Furthermore, the continuation technique is applied in some cases in order to highlight in the system’s dynamic response hysteresis ranges, jumps between multi-periodic orbits, and super-harmonics. The dynamic analysis with and without bumpers is compared to observe how unilateral constraints modify the dynamic response of the SDOF oscillator with respect to the absence of bumpers and when their presence may be beneficial with respect to response mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Malhotra, P.K.: Dynamics of seismic impacts in base-isolated buildings. Earthq. Eng. Struct. Dyn. (1997). doi:10.1002/(SICI)1096-9845(199708)26:8

    Google Scholar 

  2. Ebrahimi, B., Khamesee, M.B., Golnaraghi, M.F.: Design and modeling of a magnetic shock absorber based on eddy current damping effect. J. Sound Vib. (2008). doi:10.1016/j.jsv.2008.02.022

    Google Scholar 

  3. Ren, W., Zhang, J., Jin, G.: The virtual tuning of an automatic shock absorber. J. Mech. Eng. Sci. (2009). doi:10.1243/09544062JMES1542

    Google Scholar 

  4. Polycarpou, P.C., Papaloizou, L., Komodromos, P.: An efficient methodology for simulating earthquake-induced 3D pounding of buildings. Earthq. Eng. Struct. Dyn. (2014). doi:10.1002/eqe.2383

    Google Scholar 

  5. Andreaus, U., Nisticò, N.: An analytical-numerical model for contact-impact problems: theory and implementation in a two-dimensional distinct element algorithm. Comput. Model. Simul. Eng. 3(2), 98–110 (1998)

    Google Scholar 

  6. Andreaus, U., Casini, P.: Dynamics of SDOF oscillators with hysteretic motion-limiting stop. Nonlinear Dyn. (2000). doi:10.1023/A:1008354220584

    MathSciNet  MATH  Google Scholar 

  7. Polycarpou, P.C., Komodromos, P., Polycarpou, A.C.: A nonlinear impact model for simulating the use of rubber shock absorber for mitigating the effects of structural pounding during earthquakes. Earthq. Eng. Struct. Dyn. (2013). doi:10.1002/eqe.2194

    Google Scholar 

  8. De Simone, A., Luongo, A.: Nonlinear viscoelastic analysis of a cylindrical balloon squeezed between two rigid moving plates. Int. J. Solids Struct. (2013). doi:10.1016/j.ijsolstr.2013.03.028

    Google Scholar 

  9. Andreaus, U., Casini, P.: Dynamics of friction oscillators excited by moving base or/and driving force. J. Sound Vib. (2001a). doi:10.1006/jsvi.2000.3555

    MATH  Google Scholar 

  10. Koylu, H., Cinar, A.: The influences of worn shock absorber on ABS braking performance on rough road. Int. J. Veh. Des. (2011). doi:10.1504/IJVD.2011.043598

    Google Scholar 

  11. Luo, A.C.J., Huang, J.: Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator. Nonlinear Anal. Real World Appl. (2012). doi:10.1016/j.nonrwa.2011.07.030

    MathSciNet  MATH  Google Scholar 

  12. Tonazzi, D., Massi, F., Baillet, L., Culla, A., Di Bartolomeo, M., Berthier, Y.: Experimental and numerical analysis of frictional contact scenarios: from macro stick-slip to continuous sliding. Meccanica (2015). doi:10.1007/s11012-014-0010-2

    Google Scholar 

  13. D’Annibale, F., Luongo, A.: A damage constitutive model for sliding friction coupled to wear. Contin. Mech. Thermodyn. (2013). doi:10.1007/s00161-012-0283-4

    Google Scholar 

  14. Cuomo, M., Ventura, G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Math. Comput. Model. (1998). doi:10.1016/S0895-7177(98)00117-4

    MATH  Google Scholar 

  15. Andreaus, U., Casini, P.: Forced motion of friction oscillators limited by a rigid or deformable obstacle. Mech. Struct. Mach. (2001b). doi:10.1081/SME-100104479

    MATH  Google Scholar 

  16. Andreaus, U., Casini, P.: Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle. Int. J. Nonlinear Mech. (2002). doi:10.1081/SME-100104479

    MATH  Google Scholar 

  17. Andreaus, U., Placidi, L., Rega, G.: Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator. Commun. Nonlinear Sci. Numer. Simul. (2010). doi:10.1016/j.cnsns.2009.10.015

    MathSciNet  MATH  Google Scholar 

  18. Andreaus, U., Placidi, L., Rega, G.: Microcantilever dynamics in tapping mode atomic force microscopy via higher eigenmodes analysis. J. Appl. Phys. (2013a). doi:10.1063/1.4808446

    Google Scholar 

  19. Qin, Z.-Y., Lu, Q-S.: Grazing bifurcations and asymmetry transitions in an impact oscillator with symmetric stops. In: Chien, W.Z. (eds.) Proceedings of the 5th International Conference on Nonlinear Mechanics, (ICNM-V), pp. 1328–1334. IUTAM Bur., Shanghai, China (2007)

  20. Roveri, N., Carcaterra, A., Akay, A.: Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. J. Acoust. Soc. Am. (2009). doi:10.1121/1.3212942

    Google Scholar 

  21. Andreaus, U., Placidi, L., Rega, G.: Soft impact dynamics of a cantilever beam: equivalent SDOF model versus infinite-dimensional system. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. (2011). doi:10.1177/0954406211414484

    Google Scholar 

  22. Andreaus, U., Chiaia, B., Placidi, L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. (2013b). doi:10.1007/s00161-012-0266-5

    MathSciNet  Google Scholar 

  23. Afsharfard, A., Farshidianfar, A.: Free vibration analysis of nonlinear resilient impact dampers. Nonlinear Dyn. (2013). doi:10.1007/s11071-013-0775-1

    MathSciNet  MATH  Google Scholar 

  24. Ferdek, U., Luczko, J.: Modeling and analysis of a twin-tube hydraulic shock absorber. J. Theoret. Appl. Mech. 50(2), 627–638 (2012)

    Google Scholar 

  25. Amati, N., Festini, A., Tonoli, A.: Design of electromagnetic shock absorbers for automotive suspensions. Veh. Syst. Dyn. (2011). doi:10.1080/00423114.2011.554560

    Google Scholar 

  26. Li, C., Zhu, R., Liang, M., Yang, S.: Integration of shock absorption and energy harvesting using a hydraulic rectifier. J. Sound Vib. (2014). doi:10.1016/j.jsv.2014.04.020

    Google Scholar 

  27. Kahraman, A., Singh, R.: Dynamics of an oscillator with both clearance and continuous non-linearities. J. Sound Vib. (1992). doi:10.1016/0022-460X(92)90638-E

    MATH  Google Scholar 

  28. Luongo, A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. (1992). doi:10.1016/0022-460X(92)90510-5

    MATH  Google Scholar 

  29. Lin, S.Q., Bapat, C.N.: Estimation of clearances and impact forces using vibroimpact response: random excitation. J. Sound Vib. (1993). doi:10.1006/jsvi.1993.1178

    MATH  Google Scholar 

  30. Blankenship, G.W., Kahraman, A.: Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity. J. Sound Vib. (1995). doi:10.1006/jsvi.1995.0416

    MATH  Google Scholar 

  31. Wiercigroch, M., Sin, V.W.T.: Experimental study of a symmetrical piecewise base-excited oscillator. J. Appl. Mech. (1998). doi:10.1115/1.2789108

    Google Scholar 

  32. Leine, R.I., van Campen, D.H.: Discontinuous bifurcations of periodic solutions. Math. Comput. Model. (2002). doi:10.1016/S0895-7177(02)00124-3

    MathSciNet  MATH  Google Scholar 

  33. Gutiérrez, E., Arrowsmith, D.K.: Control of a double impacting mechanical oscillator using displacement feedback. Int. J. Bifurcat. Chaos (2004). doi:10.1142/S021812740401120X

    MATH  Google Scholar 

  34. Ping, Y., Yonghong, T., Jianmin, Y., Nin, S.: Measurement, simulation on dynamic characteristics of a wire gauze-fluid damping shock absorber. Mech. Syst. Signal Process. (2006). doi:10.1016/j.ymssp.2005.01.014

    Google Scholar 

  35. Lee, J.-Y., Yan, J.-J.: Position control of double-side impact oscillator. Mech. Syst. Signal Process. (2007). doi:10.1016/j.ymssp.2005.09.008

    Google Scholar 

  36. Belyakov, A.O., Seyranian, A.P., Luongo, A.: Dynamics of the pendulum with periodically varying length. Phys. D (2009). doi:10.1016/j.physd.2009.04.015

    MATH  Google Scholar 

  37. dell’Isola, F., Porfiri, M., Vidoli, S.: Piezo-electro mechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. C. R. Mec. (2003). doi:10.1016/S1631-0721(03)00022-6

  38. Batra, R.C., dell’Isola, F., Vidoli, S., Vigilante, D.: Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. Int. J. Solids Struct. (2005). doi:10.1016/j.ijsolstr.2004.11.004

  39. Yamaguchi, T., Fujii, Y., Fukushima, T., Tomita, N., Takita, A., Nagai, K., Maruyama, S.: Damping response analysisfor a structure connected with a nonlinear complex spring and application for a finger protected by absorbers under impact forces. Mech. Syst. Signal Process. (2014). doi:10.1016/j.ymssp.2013.08.018

  40. Anagnostopoulos, S.A.: Earthquake induced poundings: state of the art. In: Duma, G. (ed.) Proceedings of the 10th European Conference on Earthquake Engineering II, pp. 897–905. Balkema, Rotterdam, The Netherlands (1995)

  41. Bertero, V.V.: Observations on structural pounding. In: Proceedings of the International Conference on Mexico Earthquakes, pp. 264–278. ASCE, New York (1987)

  42. Earthquake Engineering Research Institute (EERI). Loma Prieta Earthquake Reconnaissance Report, Rep. No. 90–01. In: Benuska, L. (ed.) EERI, Oakland, CA (1990)

  43. Earthquake Engineering Research Institute (EERI), Kocaeli, Turkey, Earthquake of August 17. Reconnaissance (1999)

  44. Report, Publ. No. 00–03, Youd, T.L., Bardet, J.-P., Bray, J.D. (eds.) EERI, Oakland, CA (2000)

  45. Basili, M., De Angelis, M.: A reduced order model for optimal design of 2-mdof adjacent structures connected by hysteretic dampers. J. Sound Vib. (2007). doi:10.1016/j.jsv.2007.05.012

  46. Basili, M., De Angelis, M.: Optimal passive control of adjacent structures interconnected with non linear hysteretic devices. J. Sound Vib. (2007b). doi:10.1016/j.jsv.2006.09.027

    Google Scholar 

  47. Ismail, M., Rodellar, J., Pozo, F.: Passive and hybrid mitigation of potential near-fault inner pounding of a self-braking seismic isolator. Soil Dyn. Earthq. Eng. (2015). doi:10.1016/j.soildyn.2014.10.019

    Google Scholar 

  48. Reggio, A., De Angelis, M.: Combined primary-secondary system approach to the design of an equipment isolation system with High-Damping Rubber Bearings. J. Sound Vib. (2014). doi:10.1016/j.jsv.2013.12.006

    Google Scholar 

  49. Reggio, A., De Angelis, M.: Optimal design of an equipment isolation system with nonlinear hysteretic behaviour. Earthq. Engng. Struct. Dyn. (2013). doi:10.1002/eqe.2304

    Google Scholar 

  50. Komodromos, P., Polycarpou, P.C., Papaloizou, L., Phocas, M.C.: Response of seismically isolated buildings considering poundings. Eng. Struct. Dyn., Earthq (2007). doi:10.1002/eqe.692

    Google Scholar 

Download references

Acknowledgments

The research was funded by the Italian Ministry of University and Research, under the Scientific Research Program of Relevant National Interest: Year 2010–2011, Protocol 2010MBJK5B-005, Title “Dynamics, Stability and Control of Flexible Structures.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Andreaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreaus, U., De Angelis, M. Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints. Nonlinear Dyn 84, 1447–1467 (2016). https://doi.org/10.1007/s11071-015-2581-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2581-4

Keywords

Navigation