Skip to main content

Advertisement

Log in

Distributed time-constrained guidance using nonlinear model predictive control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper presents a new time-constrained guidance approach for the multi-missile network by using the nonlinear model predictive control (MPC) technique. The objective is to coordinate the impact time of a group of interceptor missiles against the stationary target. The framework of a distributed MPC scheme is developed. Each missile is assigned its own finite-horizon optimal control problem (FHOCP) and only shares the information with its neighbors. The solutions of the local FHOCP are obtained by using the improved pigeon-inspired optimization method that serves as a convenient tool to deal with the equality and inequality constraints. Further, a safe distance-based penalty term is integrated into the local cost function to achieve no-fly zone avoidance for the multi-missile network. The numerical simulations show that the distributed MPC scheme is effective to implement the cooperative time-constrained guidance with satisfied accuracy of target capture. The Monte Carlo test also demonstrates the robustness of the proposed guidance approach in consideration of the no-fly zone constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Yu, W., Chen, W.: Guidance law with circular no-fly zone constraint. Nonlinear Dyn. 78, 1953–1971 (2014)

    Article  Google Scholar 

  2. Zhang, Y., Sun, M., Chen, Z.: Finite-time convergent guidance law with impact angle constraint based on sliding-mode control. Nonlinear Dyn. 70, 619–625 (2012)

    Article  MathSciNet  Google Scholar 

  3. Zhou, D., Sun, S., Teo, K.L.: Guidance laws with finite time convergence. J. Guid. Control Dyn. 32(6), 1838–1846 (2009)

    Article  Google Scholar 

  4. Zhao, J., Zhou, R.: Unified approach to cooperative guidance laws against stationary and maneuvering targets. Nonlinear Dyn. 81(4), 1635–1647 (2015)

    Article  MathSciNet  Google Scholar 

  5. Zhang, Y., Ma, G., Liu, A.: Guidance law with impact time and impact angle constraints. Chin. J. Aeronaut. 26(4), 960–966 (2013)

    Article  Google Scholar 

  6. Zhao, J., Zhou, R., Jin, X.: Progress in reentry trajectory planning for hypersonic vehicle. J. Syst. Eng. Electron. 25(4), 627–639 (2014)

    Article  Google Scholar 

  7. Bao, W.: Present situation and development tendency of aerospace control techniques. Acta Automat. Sin. 39(6), 697–702 (2013)

    Article  Google Scholar 

  8. Zhao, J., Zhou, R., Dong, Z.: Three-dimensional cooperative guidance laws against stationary and maneuvering targets. Chin. J. Aeronaut. 28(4), 1104–1120 (2015)

    Article  Google Scholar 

  9. Zhao, J., Zhou, R.: Reentry trajectory optimization for hypersonic vehicle satisfying complex constraints. Chin. J. Aeronaut. 26(6), 1544–1553 (2013)

    Article  Google Scholar 

  10. Jeon, I.S., Lee, J.I., Tahk, M.J.: Impact-time-control guidance law for anti-ship missiles. IEEE Trans. Control Syst. Technol. 14(2), 260–266 (2006)

    Article  Google Scholar 

  11. Jeon, I.S., Lee, J.I., Tahk, M.J.: Homing guidance law for cooperative attack of multiple missiles. J. Guid. Control Dyn. 33(1), 275–280 (2010)

    Article  Google Scholar 

  12. Lee, J.I., Jeon, I.S., Tahk, M.J.: Guidance law to control impact time and angle. IEEE Trans. Aerosp. Electron. Syst. 43(1), 301–310 (2007)

    Article  Google Scholar 

  13. Zhao, S., Zhou, R.: Cooperative guidance for multimissile salvo attack. Chin. J. Aeronaut. 21(6), 533–539 (2008)

    Article  MathSciNet  Google Scholar 

  14. Peng, C., Liu, X., Wu, S., et al.: Consensus problems in distributed cooperative terminal guidance time of multi-missiles. Control Decis. 25(10), 1557–1566 (2010)

    MathSciNet  Google Scholar 

  15. Zhang, Y., Ma, G., Wu, H.: A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 228(10), 1725–1734 (2014)

    Article  Google Scholar 

  16. Zhang, Y., Ma, G., Wang, X.: Time cooperative guidance for multi-missiles: a leader–follower strategy. Acta Aeronaut. Astronaut. Sin. 30(6), 1109–1118 (2009)

    MathSciNet  Google Scholar 

  17. Sun, X., Zhou, R., et al.: Consensus of leader–followers system of multi-missile with time-delays and switching topologies. Optik 125(3), 1202–1208 (2014)

    Article  Google Scholar 

  18. Zou, L., Ding, Q., Zhou, R.: Distributed cooperative guidance for multiple heterogeneous networked missiles. J. Beijing Univ. Aeronaut. Astronaut. 23(1), 103–108 (2010)

    Google Scholar 

  19. Zhao, S., Zhou, R., Wei, C.: Design of time-constrained guidance laws via virtual leader approach. Chin. J. Aeronaut. 23(1), 103–108 (2010)

    Article  Google Scholar 

  20. Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dunbar, W.B., Murray, R.M.: Receding horizon control of multi-vehicle formations: a distributed implementation. IEEE Conference on Decision and Control, Dec 14–17, Atlantis, Paradise Island, Bahamas, pp. 1995–2002 (2004)

  22. Zhao, J., Zhou, R.: Obstacle avoidance for multi-missile network via distributed coordination algorithm. Chin. J. Aeronaut. 29(2) ( in press, 2016)

  23. Cruz, G.C.S., Encarnacao, P.M.M.: Obstacle avoidance for unmanned aerial vehicles. J. Intell. Robot. Syst. 65(1–4), 203–217 (2012)

    Article  Google Scholar 

  24. Campbell, S., Naeem, W., Irwin, G.W.: A review on improving the autonomy of unmanned surface vehicles through intelligent collision avoidance manoeuvres. Annu. Rev. Control. 36(2), 267–283 (2012)

    Article  Google Scholar 

  25. Fang, M., Wang, S., Mu-Chen, W., et al.: Applying the self-tuning fuzzy control with the image detection technique on the obstacle-avoidance for autonomous underwater vehicles. Ocean Eng. 93(1), 11–24 (2015)

    Article  Google Scholar 

  26. Korayem, M.H., Zehfroosh, A., Tourajizadeh, H., et al.: Optimal motion planning of nonlinear dynamic systems in the presence of obstacles and moving boundaries using SDRE: application on cable-suspended robot. Nonlinear Dyn. 76(2), 1423–1441 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, G., Sun, X., Zhang, L., et al.: Saturation attack based route planning and threat avoidance algorithm for cruise missiles. J. Syst. Eng. Electron. 22(6), 948–953 (2011)

    Article  MathSciNet  Google Scholar 

  28. Zhao, J., Zhou, R.: Pigeon-inspired optimization applied to constrained gliding trajectories. Nonlinear Dyn. 82(4), 1781–1795 (2015)

    Article  MathSciNet  Google Scholar 

  29. Zhang, B., Duan, H.: Predator–prey pigeon-inspired optimization for UAV three-dimensional path planning. Adv. Swarm Intell. 8795, 96–105 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editors and the reviewers for their critical and constructive review of this manuscript. This study was co-supported by the National Natural Science Foundation of China (No: 61273349, 61175109) and the Aeronautical Science Foundation of China (No: 2014ZA18004, 2013ZA18001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, S. & Zhou, R. Distributed time-constrained guidance using nonlinear model predictive control. Nonlinear Dyn 84, 1399–1416 (2016). https://doi.org/10.1007/s11071-015-2578-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2578-z

Keywords

Navigation