Skip to main content
Log in

Bifurcation analysis in a modified Lesile–Gower model with Holling type II functional response and delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a modified Lesile–Gower predator–prey system with delay is considered. The existence of Hopf bifurcations at the positive equilibrium is established by analyzing the distribution of the characteristic values. Furthermore, different to previous papers, a multiple time scale technique is employed to calculate the normal form on the center manifold of delay differential equations, which is much easier to implement in practice than the conventional method, center manifold reduction. Finally, to verify our theoretical predictions, some numerical simulations are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aguirrea, P., et al.: Two limit cycles in a Leslie–Gower predator–prey model with additive Allee effect. Nonlinear Anal. RWA 10, 1401–1416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, J.F.: A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10, 707–723 (1968)

    Article  Google Scholar 

  3. Aziz-Alaoui, M.A., Okiye, M.Daher: Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-Type II schemes. Appl. Math. Lett. 16, 1069–1075 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S.S., Shi, J.P., Wei, J.J.: Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems. J. Nonlinear Sci. 23, 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, H., Song, X.: An impulsive predator–prey system with modified Leslie-Gower and Holling type II schemes. Chaos Solitons Fractals 36, 1320–1331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gupta, R.P., et al.: Bifurcation analysis and control of Leslie–Gower predator-prey model with Michaelis–Menten type prey-harvesting. Differ. Equ. Dyn. Syst. 20, 339–366 (2012)

  7. Gupta, R.P., Chandra, P.: Bifurcation analysis of modified Leslie–Gower predator-prey model with Michaelis–Menten type prey harvesting. J. Math. Anal. Appl. 398, 278–295 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie–Gower and Holling-type II schemes with stochastic perturbation. J. Math. Anal. Appl. 359, 482–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang, Z., Guo, Z., Sun, Y.: Stability analysis of a predator–prey model. Int. J. Biomath. 5, 1–14 (2009)

    MathSciNet  Google Scholar 

  10. Korobeinikov, A.: A Lyapunov function for Leslie–Gower predator-prey models. Appl. Math. Lett. 14, 697–699 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leslie, P.H.: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leslie, P.H.: A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45, 16–31 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leslie, P.H., Gower, J.C.: The properties of a stochastic model for the predator–prey type of interaction between two species. Biometrika 47, 219–234 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Li, C.: Stability and Hopf bifurcation analysis on a delayed Leslie–Gower predator-prey system incorporating a prey refuge. Appl. Math. Comput. 219, 4576–4589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y., Xiao, D.: Bifurcations of a predator–prey system of Holling and Leslie types. Chaos Solitons Fractals 34, 606–620 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lian, F., Xu, Y.: Hopf bifurcation analysis of a predator-prey system with Holling type IV functional response and time delay. Appl. Math. Comput. 215, 1484–1495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, Y.: Global Hopf bifurcation in the Leslie–Gower predator–prey model with two delays. Nonlinear Anal. RWA 13, 370–375 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nayfeh, A.H.: Order reduction of retarded nonlinear systems-the method of multiple scales versus center-manifold reduction. Nonlinear Dyn. 51, 483–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nie, L., et al.: Qualitative analysis of a modified Leslie–Gower and Holling-type II predator-prey model with state dependent impulsive effects. Nonlinear Anal. RWA 11, 1364–1373 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nindjin, A.F., et al.: Analysis of a predator–prey model with modified Leslie–Gower and Holling-type II schemes with time delay. Nonlinear Anal. RWA 7, 1104–1118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, X., Li, Y.: Dynamic behaviors of the periodic predator–prey model with modified Leslie–Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. RWA 9, 64–79 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, Y., Yuan, S., Zhang, J.: Bifurcation analysis in the delayed Leslie–Gower predator–prey system. Appl. Math. Model. 33, 4049–4061 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tian, Y., Weng, P.: Stability analysis of diffusive predator–prey model with modified Leslie–Gower and Holling-type III schemes. Appl. Math. Comput. 218, 3733–3745 (2011)

  24. Wollkind, D.J., Logan, J.A.: Temperature-dependent predator–prey mite ecosystem on apple tree foliage. J. Math. Biol. 6, 265–283 (1978)

    Article  Google Scholar 

  25. Yafia, R., Adnani, F., Alaoui, H.: Limit cycle and numerical simulations for small and large delays in a predator–prey model with modified Leslie–Gower and Holling-type II schemes. Nonlinear Anal. RWA 9, 2055–2067 (2008)

    Article  MATH  Google Scholar 

  26. Yu, P., Zhu, S.: Computation of the normal forms for general M-DOF systems using multiple time scales. Part I: autonomous systems. Commun. Nonlinear Sci. Numer. Simul. 10(8), 869–905 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan, S., Song, Y.: Stability and Hopf bifurcations in a delayed Leslie–Gower predator–prey system. J. Math. Anal. Appl. 355, 82–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, T., Song, Y., Zang, H.: The stability and Hopf bifurcation analysis of a gene expression model. J. Math. Anal. Appl. 395, 103–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhang, J.: Stability and bifurcation periodic solutions in a Lotka–Volterra competition system with multiple delays. Nonlinear Dyn. 70, 849–860 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their valuable comments and suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (No: 11371058 and 11501159) and the Youth Foundation of Hebei University (No: 2014-295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Yuan, R. Bifurcation analysis in a modified Lesile–Gower model with Holling type II functional response and delay. Nonlinear Dyn 84, 1341–1352 (2016). https://doi.org/10.1007/s11071-015-2572-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2572-5

Keywords

Navigation