Skip to main content

Advertisement

Log in

Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we propose improvements of stability and robustness of time-integration energy conserving schemes for nonlinear dynamics of shear-deformable geometrically exact planar beam. The finite element model leads to a set of stiff differential equations to the large difference in bending versus shear or axial stiffness. The proposed scheme is based upon the energy conserving scheme for 2D geometrically exact beam. The scheme introduces desirable properties of controllable energy decay in higher modes. Several numerical simulations are presented to illustrate the performance of the decaying energy enhancements and overall stability and robustness of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ibrahimbegovic, A., Mamouri, S.: Nonlinear dynamics of flexible beams in planar motion: formulation and time-stepping scheme for stiff problems. Comput. Struct. 70, 1–22 (1999)

    Article  MATH  Google Scholar 

  2. Ibrahimbegovic, A., Mamouri, S.: Energy conserving/decaying implicit time-stepping scheme for nonlinear dynamics of three-dimensional beams undergoing finite rotations Comput. Methods Appl. Mech. Engrg. 191, 4241–4258 (2002)

    Article  MATH  Google Scholar 

  3. Gams, M., Planinc, I., Saje, M.: Energy conserving time integration scheme for geometrically exact beam Comput. Methods Appl. Mech. Engrg. 196, 2117–212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85, 437–445 (2007)

    Article  MathSciNet  Google Scholar 

  5. Bathe, K.J., Nooh, G.: Insight into an implicit time integration scheme for structural dynamics. Comput. Struct. 98–99, 1–6 (2012)

    Article  Google Scholar 

  6. Armero, F., Romero, I.: On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part I: low-order methods for two model problems and nonlinear elastodynamics. Comput. Methods Appl. Mech. Engrg. 190, 2603–2649 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Armero, F., Romero, I.: On the formulation of high-frequency dissipative time-stepping algorithms for nonlinear dynamics. Part II: second-order methods. Comput. Methods Appl. Mech. Engrg. 190, 6783–6824 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sansour, C., Nguyen, T.L., Hjiaj, M.: An energy-momentum method for in-plane geometrically exact Euler-Bernoulli beam dynamics. Int. J. Numer. Meth. Engng. 102, 99–134 (2015)

    Article  MathSciNet  Google Scholar 

  9. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. ASCE 85, 67–94 (1959)

    Google Scholar 

  10. Crisfield, M.A., Shi, J.: An energy conserving co-rotational procedure for non-linear dynamics with finite elements. Nonlinear Dyn. 9, 37–52 (1996)

    Article  Google Scholar 

  11. Weiss, H.: Dynamics of geometrically nonlinear rods: II. Numer. Methods Comput. Ex. Nonlinear Dyn. 30, 383–415 (2002)

    MATH  Google Scholar 

  12. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 282–292 (1977)

    Google Scholar 

  13. Bauchau, O.A., Damilano, G., Theron, N.J.: Numerical integration of non-linear elastic multi-body systems. Int. J. Numer. Methods Engrg. 38, 2737–2751 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bauchau, O.A., Joo, T.: Computational schemes for non-linear elastodynamics. Int. J. Numer. Methods Engrg. 45, 693–719 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Belytschko, T., Lin, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, New York (2000). p. 650

    MATH  Google Scholar 

  16. Géradin, M., Cardona, A.: Flexible Multibody Dynamics. A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  17. Kuhl, D., Crisfield, M.A.: Energy conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Methods Engrg. 45, 569–599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized a method. ASME J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Betsch, P., Steinmann, P.: Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160, 88–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Engrg. 164, 307–331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes, T.J.R.: The Finite Element Method. Prentice Hall, Englewood Cliffs, NJ (1992)

    Google Scholar 

  22. Crisfield, M., Shi, J.: co-rotational element/time-integration strategy for non-linear dynamics. Int J. Numer. Methods Engng. 37, 1897–1913 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korelc, J.: Automatic generation of finite-element code by simultaneous optimization of expressions. Theor. Comput. Sci. 187, 231–248 (1997)

    Article  MATH  Google Scholar 

  24. Crisfield, M.A., Galvanetto, U., Jelenić, G.: Dynamics of 3D corotational beams. Comput. Mech. 20, 507–519 (1997)

    Article  MATH  Google Scholar 

  25. Simo, J.C., Tarnow, N., Doblare, M.: Nonlinear dynamics of three-dimensional rods: exact energy and momentum conserving algorithm. Int. J. Numer. Meth. Engrg. 38, 1431–1473 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuhl, D., Ramm, E.: Generalized energy-momentum method for nonlinear adaptive shell dynamics. Int. J. Numer. Methods Engrg. 178, 343–366 (1999)

  27. Bauchau, O.A., Theron, N.J.: Energy decaying scheme for nonlinear elastic multi-body systems. Comput. Struct. 59, 317–331 (1996)

    Article  MATH  Google Scholar 

  28. Bauchau, O.A., Theron, N.J.: Energy decaying scheme for nonlinear beam model. Comput. Methods Appl. Mech. Engrg. 134, 37–56 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bottasso, C.L., Bauchau, O.A., Choi, J.Y.: An energy decaying scheme for nonlinear dynamics of shells. Comput. Methods Appl. Mech. Engrg. 191, 3099–3121 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bottasso, C.L., Borri, M., Trainelli, L.: Integration of elastic multi body systems by invariant conserving/dissipating algorithms. Part II:numerical schemes and applications. Comput. Methods Appl. Mech. Engrg. 190, 3701–3733 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gams, M., Planinc, I., Saje, M.: A heuristic viscosity-type dissipation for high frequency oscillation damping in time integration algorithms. Comput. Mech. 41, 17–29 (2007)

    Article  MATH  Google Scholar 

  32. Riessner, E.: On one-dimensional finite strain theory: the plane problem. J. Appl. Math. Phys. 23, 795–804 (1972)

    Article  Google Scholar 

  33. Ibrahimbegovic, A.: François Frey: finite element analysis of linear and non linear planar deformation of elastic initially curved beams. Int. J. Numer. Methods Eng. 36, 3239–3258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairier, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1991)

    Book  Google Scholar 

  35. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, vol. I, II and III. Butterworth Heinemann, London (2000)

    MATH  Google Scholar 

  36. Ibrahimbegovic, A., Almikdad, M.: Finite rotations in dynamics of beams and implicit time-stepping schemes. Int. J. Numer. Meth. Engrg. 40, 781–814 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ibrahimbegovic, A., Mamouri, S.: On rigid components and joint constraints in nonlinear dynamics of flexible multibody systems employing 3D geometrically exact beam model. Comput. Methods Appl. Mech. Engrg. 188, 805–831 (2000)

    Article  MATH  Google Scholar 

  38. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part I and part II. ASME J. Appl. Mech. 53, 849–854 (1986)

    Article  MATH  Google Scholar 

  39. Hsiao, K., Jang, J.: Dynamic analysis of planar flexible mechanisms byco-rotational formulation. Comput. Methods Appl. Mech. Engrg. 87, 1–14 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mamouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamouri, S., Kouli, R., Benzegaou, A. et al. Implicit controllable high-frequency dissipative scheme for nonlinear dynamics of 2D geometrically exact beam. Nonlinear Dyn 84, 1289–1302 (2016). https://doi.org/10.1007/s11071-015-2567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2567-2

Keywords

Navigation