Skip to main content
Log in

Evaluation of bifurcation phenomena in a modified Shen–Larter model for intracellular \(\hbox {Ca}^{\varvec{2+}}\) bursting oscillations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present work describes an evaluation of the bifurcation phenomena in a modified Shen–Larter model based on calcium-induced calcium release and inositol triphosphate \((\hbox {IP}_{3})\) crosscoupling for calcium ion \((\hbox {Ca}^{2+})\) bursting oscillations. A time delay for negative \(\hbox {Ca}^{2+}\) feedback on the \((\hbox {IP}_{3})\) receptor is added to the original Shen–Larter model, by introducing the proportion of receptors not inactivated by \(\hbox {Ca}^{2+}\) as a new variable. Compared with the original model, the number of chaotic regions for a stimulation level r is significantly reduced, and regions of \(\hbox {Ca}^{2+}\) oscillations (particularly bursting) appear to become slightly enlarged. Different topological types of bursting oscillations in this modified model are classified by fast/slow dynamical analysis and codimension-2 bifurcations of fast subsystem, when choosing better of two slow variables the free \(\hbox {Ca}^{2+}\) concentration in the endoplasmic reticulum and the \(\hbox {IP}_{3}\) concentration in the cytosol. Furthermore, classification and transition mechanisms of bursting \(\hbox {Ca}^{2+}\) oscillations could help to understand or detect more distinctive oscillatory behaviors of real cells in response to different levels of stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berridge, M., Lipp, P., Bootman, M.: Calcium signalling. Curr. Biol. 9, 157 (1999)

    Article  Google Scholar 

  2. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  3. Schuster, S., Marhl, M., Hofer, T.: Modeling of simple and complex calcium oscillations from single-cell responses to intercellular signalling. Eur. J. Biochem. 269, 1333 (2002)

    Article  Google Scholar 

  4. Marhl, M., Schuster, S., Brumen, M.: Mitochondria as an important factor in the maintenance of constant amplitudes of cytosolic calcium oscillations. Biophys. Chem. 63, 125 (1998)

    Article  Google Scholar 

  5. Dupont, G., Goldbeter, A.: One-pool model for \({\rm Ca}^{2+}\) release. Cell Calcium 14, 311 (1993)

  6. Perc, M., Marhl, M.: Different types of bursting calcium oscillations in non-excitable cells. Chaos Solitons Fractals 18, 759 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupont, G., Goldbeter, A.: Oscillations and waves of cytosolic calcium: insights from theoretical models. BioEssays 14, 485 (1992)

  8. Ji, Q.B., Lu, Y.: Bifurcations and continuous transitions in a nonlinear model of intracellular calcium oscillations. Int. J. Bifurc. Chaos 23, 1350033 (2013)

    Article  MathSciNet  Google Scholar 

  9. Domijan, M., Murray, R., Sneyd, J.: Dynamical probing of the mechanisms underlying calcium oscillations. J. Nonlinear Sci. 16, 483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10, 1171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shen, P., Larter, R.: Chaos in intracellular \({\rm Ca}^{2+}\) oscillations in a new model for non-excitable cells. Cell Calcium 17, 225 (1995)

  12. Houart, G., Dupont, G., Goldbeter, A.: Bursting, chaos and birhythmicity originating from self-modulation of the inositol 1,4,5-triphosphate signal in a model for intracellular \({\rm Ca}^{2+}\) oscillations. Bull. Math. Biol. 61, 507 (1999)

  13. Perc, M., Marhl, M.: Sensitivity and flexibility of regular and chaotic calcium oscillations. Biophys. Chem. 104, 509 (2003)

    Article  MATH  Google Scholar 

  14. Galvanovskis, J., Sandblom, J.: Periodic forcing of intracellular calcium oscillators theoretical studies of the effects of low frequency fields on the magnitude of oscillations. Bioelectrochem. Bioenerg. 46, 161 (1998)

    Article  Google Scholar 

  15. Yang, Z.Q., et al.: Complex dynamics of compound bursting with burst episode composed of different bursts. Nonlinear Dyn. 70, 2003 (2012)

    Article  MathSciNet  Google Scholar 

  16. Duan, L.X., Lu, Q.S., Wang, Q.Y.: Two-parameter bifurcation analysis of firing activities in the Chay neuronal model. Neurocomputing 72, 341 (2008)

    Article  Google Scholar 

  17. Ma, S.Q., Lu, Q.S., Feng, Z.S.: Synchronization and lag synchrony on a neuron model coupling with time delay. Int. J. Nonlinear Mech. 45, 659 (2010)

    Article  Google Scholar 

  18. Pan, M., Lu, Q.S.: Dynamical effects of calcium pump on cytosolic calcium bursting oscillations with \({\rm IP}_{3}\) degradation. Chin. Phys. Lett. 27, 010502 (2010)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11202083 and 11372017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqin Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Q., Zhou, Y., Yang, Z. et al. Evaluation of bifurcation phenomena in a modified Shen–Larter model for intracellular \(\hbox {Ca}^{\varvec{2+}}\) bursting oscillations. Nonlinear Dyn 84, 1281–1288 (2016). https://doi.org/10.1007/s11071-015-2566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2566-3

Keywords

Navigation