Skip to main content

Travelling wave solutions of a two-dimensional generalized Sawada–Kotera equation

Abstract

Lie symmetry analysis is performed on a two-dimensional generalized Sawada–Kotera equation, which arises in various problems in mathematical physics. Exact solutions are obtained using the Lie point symmetries method and the simplest equation method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Lü, X.: Bright-soliton collisions with shape change by intensity redistribution for the coupled Sasa-Satsuma system in the optical fiber communications. Commun. Nonlinear Sci. Numer. Simul. 14, 3969–3987 (2014)

    Article  MathSciNet  Google Scholar 

  2. Lü, X., Geng, T., Zhang, C., Zhu, H., Meng, X., Tian, B.: Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model with truncated Painlev expansion, Hirota bilinear method and symbolic computation. Internat. J. Modern Phys. B 23, 5003–5015 (2009)

    Article  MATH  Google Scholar 

  3. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model. Chaos 23(013122), 1–7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lü, X., Peng, M.: Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simul. 18, 2304–2312 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lü, X.: Soliton behavior for a generalized mixed nonlinear Schrdinger model with N-fold Darboux transformation. Chaos 23(033137), 1–8 (2013)

    Article  Google Scholar 

  6. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrdinger equation. Nonlinear Dynam. 81, 239–247 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lü, X., Li, J.: Integrability with symbolic computation on the BogoyavlenskyKonoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dynam. 77, 135–143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lü, X., Peng, M.: Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system. Nonlinear Dynam. 73, 405–410 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ablowitz, M.J., Clarkson, P.A.: Solitons. Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  10. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 14, 3507–3529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang, X.Y., Fei, H., Sen-Yue, L.: Variable coefficient KdV equation and the analytic diagnosis of a pole blocking life cycle. Chin Phys. Lett. 23, 887–890 (2006)

    Article  Google Scholar 

  12. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  13. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zheng, G.B., Liu, B., Wang, Z.J., Zheng, S.K.: Variational principle for nonlinear magneto-electro-elastodynamics with finite displacement by He’s semi-inverse method. Int. J. Nonlinear Sci. Numer. Simul. 10, 1523–1526 (2009)

    Google Scholar 

  15. Wazwaz, A.M.: Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method. Appl. Math. Comput. 174, 289–299 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bruzon, M.S., Gandarias, M.L., Torrisi, M., Tracina, R.: On some applications of transformation groups to a class of nonlinear dispersive equations. Nonlinear Anal. Real World Appl. 13, 1139–1151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Torrisi, M., Tracina, R.: Exact solutions of a reactiondiffusion system for Proteus mirabilis bacterial colonies. Nonlinear Anal. Real World Appl. 12, 1865–1874

  18. Dubrovsky, V.G., Topovsky, A.V., Basaleav, M.Y.: New exact solutions of two-dimensional integrable equations using the \(\partial \)-dressing method. Theoret. Math. Phys. 167, 725–739 (2011)

    Article  MathSciNet  Google Scholar 

  19. Olver, P.J.: Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (1993)

    Book  Google Scholar 

  20. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1–3. CRC Press, Boca Raton (1994–1996)

  21. Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Applied Mathematical Sciences. Springer, New York (1989)

  22. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitions Fractals 24, 1217–1231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lü, X., Lin, F.H., Qi, F.H.: Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation, Bäcklund transformation and soliton solutions. Appl. Math. Model. 39, 3221–3226 (2015)

  24. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40–46 (2016)

  25. Lü, X., Lin, F.H.: Soliton excitations and shape-changing collisions in alpha helical proteins with interspine coupling at higher order. Commun. Nonlinear Sci. Numer. Simul. 32, 241–261 (2016)

  26. Lü, X., Ma, W.X., Khalique, C.M.: A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model. Appl. Math. Lett. 50, 37–42 (2015)

  27. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211–1220 (2015)

  28. Lü, X., Ling, L.M.: Vector bright solitons associated with positive coherent coupling via Darboux transformation. Chaos 25, 1–8 (2015)

Download references

Acknowledgments

Abdullahi Rashid Adem would like to thank the Faculty Research Committee of FAST, North-West University, Mafikeng Campus, South Africa, for its financial support. We thank the editor and referees for valuable comments. This work is supported by the National Natural Science Foundation of China under Grant No. 61308018, by China Postdoctoral Science Foundation under Grant No. 2014T70031, by the Fundamental Research Funds for the Central Universities of China (2014RC019 and 2015JBM111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adem, A.R., Lü, X. Travelling wave solutions of a two-dimensional generalized Sawada–Kotera equation. Nonlinear Dyn 84, 915–922 (2016). https://doi.org/10.1007/s11071-015-2538-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2538-7

Keywords