Advertisement

Nonlinear Dynamics

, Volume 84, Issue 2, pp 607–626 | Cite as

Big bang bifurcations in von Bertalanffy’s dynamics with strong and weak Allee effects

  • J. Leonel RochaEmail author
  • Abdel-Kaddous Taha
  • Danièle Fournier-Prunaret
Original Paper

Abstract

The main purpose of this work was to study population dynamic discrete models in which the growth of the population is described by generalized von Bertalanffy’s functions, with an adjustment or correction factor of polynomial type. The consideration of this correction factor is made with the aim to introduce the Allee effect. To the class of generalized von Bertalanffy’s functions is identified and characterized subclasses of strong and weak Allee’s functions and functions with no Allee effect. This classification is founded on the concepts of strong and weak Allee’s effects to population growth rates associated. A complete description of the dynamic behavior is given, where we provide necessary conditions for the occurrence of unconditional and essential extinction types. The bifurcation structures of the parameter plane are analyzed regarding the evolution of the Allee limit with the aim to understand how the transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is realized. To generalized von Bertalanffy’s functions with strong and weak Allee effects is identified an Allee’s effect region, to which is associated the concepts of chaotic semistability curve and Allee’s bifurcation point. We verified that under some sufficient conditions, generalized von Bertalanffy’s functions have a particular bifurcation structure: the big bang bifurcations of the so-called box-within-a-box type. To this family of maps, the Allee bifurcation points and the big bang bifurcation points are characterized by the symmetric of Allee’s limit and by a null intrinsic growth rate. The present paper is also a significant contribution in the framework of the big bang bifurcation analysis for continuous 1D maps and unveil their relationship with the explosion birth and the extinction phenomena.

Keywords

Von Bertalanffy’s dynamics Strong and weak Allee effects Big bang bifurcation Extinction 

Notes

Acknowledgments

Research partially sponsored by national funds through the Fundação Nacional para a Ciência e Tecnologia, Portugal—FCT, CEAUL and ISEL. The authors thank the editor and the referees for their careful reading and helpful comments, which lead to a huge improvement in the presentation of the original manuscript.

References

  1. 1.
    von Bertalanffy, L.: A quantitative theory of organic growth. Hum. Biol. 10, 181–213 (1938)Google Scholar
  2. 2.
    von Bertalanffy, L.: Quantitative laws in metabolism and growth. Q. Rev. Biol. 32, 217–231 (1957)CrossRefGoogle Scholar
  3. 3.
    Essington, T.E., Kitchell, J.F., Walters, C.J.: The von Bertalanffy growth function, bioenergetics and the consumption rates of fish. Can. J. Fish. Aquat. Sci. 58, 2129–2138 (2001)CrossRefGoogle Scholar
  4. 4.
    Cailliet, G.M., Smith, W.D., Mollet, H.F., Goldman, K.J.: Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting. Environ. Biol. Fish. 77, 211–228 (2006)CrossRefGoogle Scholar
  5. 5.
    Karpouzi, V.S., Pauly, D.: Life-history patterns in marine birds. In: Palomares, M.L.D., et al. (Eds.) Fisheries Center Research Reports, Von Bertalanffy Growth Parameters of Non-Fish Marine Organisms, vol. 16, no. 10, pp. 27–43. The Fisheries Center, University of British Columbia, Canada (2008)Google Scholar
  6. 6.
    Allee, W.C.: Animal Aggregations. University of Chicago Press, Chicago (1931)Google Scholar
  7. 7.
    Elaydi, S., Sacker, R.J.: Population models with Allee effect: a new model. J. Biol. Dyn. 4, 397–408 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    González-Olivares, E., González-Yañez, B., Mena-Lorca, J., Flores, J.D.: Uniqueness of limit cycles and multiple attractors in a Gause-type predator–prey model with nonmonotonic functional response and Allee effect on prey. Math. Biosci. Eng. 10, 345–367 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Livadiotis, G., Elaydi, S.: General Allee effect in two-species population biology. J. Biol. Dyn. 6, 959–973 (2012)CrossRefGoogle Scholar
  10. 10.
    Rocha, J.L., Aleixo, S.M.: Von Bertalanffy’s growth dynamics with strong Allee effect. Discuss. Math. Probab. Stat. 12, 35–45 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rocha, J.L., Fournier-Prunaret, D., Taha, A.-K.: Strong and weak Allee effects and chaotic dynamics in Richards’ growths. Discret. Contin. Dyn. Syst. Ser. B 18(9), 2397–2425 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rocha, J.L., Fournier-Prunaret, D., Taha, A.-K.: Big bang bifurcations and Allee effect in Blumberg’s dynamics. Nonlin. Dyn. 77(4), 1749–1771 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schreiber, S.: Allee effects, extinctions and chaotic transients in simple population models. Theor. Popul. Biol. 64, 201–209 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    Boukal, D.S., Berec, L.: Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters. J. Theor. Biol. 218, 375–394 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Aleixo, S.M., Rocha, J.L., Pestana, D.D.: Populational growth models proportional to beta densities with Allee effect. Am. Inst. Phys. 1124, 3–12 (2009)MathSciNetGoogle Scholar
  16. 16.
    Aleixo, S.M., Rocha, J.L.: Generalized models from \(Beta(p,2)\) densities with strong Allee effect: dynamical approach. J. Comput. Inf. Technol. 3, 201–207 (2012)Google Scholar
  17. 17.
    Rocha, J.L., Taha, A-K., Fournier-Prunaret, D.: Bifurcation structures in von Bertalanffy’s chaotic growth models with strong and weak Allee effects, submited (2015)Google Scholar
  18. 18.
    Rocha, J.L., Aleixo, S.M., Caneco, A.: Chaotic dynamics and synchronization of von Bertalanffy’s growth models. In: Bourguignon, J.-P., et al. (eds.) Dynamics, Games and Science, CIM Series in Mathematical Sciences 1, Chap. 30, pp. 547–571. Springer (2015)Google Scholar
  19. 19.
    Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  20. 20.
    Rocha, J.L., Aleixo, S.M.: Dynamical analysis in growth models: Blumberg’s equation. Discret. Contin. Dyn. Syst. Ser. B 18(3), 783–795 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rocha, J.L., Aleixo, S.M.: An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Math. Biosci. Eng. 10(2), 379–398 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schreiber, S.: Chaos and population disappearances in simple ecological models. J. Math. Biol. 42, 239–260 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Fujikawa, H., Kai, A., Morozomi, S.: A new logistic model for Escherichia coli growth at constant and dynamic temperatures. Food Microbiol. 21, 501–509 (2004)CrossRefGoogle Scholar
  24. 24.
    Fournier-Prunaret, D.: The bifurcation structure of a family of degree one circle endomorphisms. Int. J. Bifurc. Chaos 1, 823–838 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mira, C.: Chaotic Dynamics. From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism. World Scientific, Singapore (1987)Google Scholar
  26. 26.
    Mira, C., Gardini, L., Barugola, A., Cathala, J.-C.: Chaotic Dynamics in Two-Dimensional Noninvertible Maps. World Scientific, Singapore (1996)zbMATHGoogle Scholar
  27. 27.
    Allam, R., Mira, C.: Crossroad area-dissymmetrical spring area-symmetrical spring area and double crossroad area-double spring area transitions. Int. J. Bifurc. Chaos 3, 429–435 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Carcassès, J-P.: An algorithm to determine the nature and the transitions of communication areas generated by a one-dimensional map. In: Lampreia, J.P., et al. (eds.) Proceedings of European Conference on Iteration Theory (ECIT 1991), pp. 27–38. World Scientific, Singapore (1992)Google Scholar
  29. 29.
    Rocha, J.L., Taha, A-K., Fournier-Prunaret, D.: From weak Allee effect to no Allee effect in Richards’ growth models. In: López-Ruiz, R., et al. (eds.) Nonlinear Maps and Their Applications, Proceedings in Mathematics and Statistics, vol. 112, Chp. 16, pp. 253–267. Springer (2015)Google Scholar
  30. 30.
    Carcassès, J.-P.: Sur Quelques Structures Complexes de Bifurcations de Systemes Dynamiques, Doctorat de L’Universite Paul Sabatier, INSA, Toulouse (1990)Google Scholar
  31. 31.
    Avrutin, V., Wackenhut G., Schanz, M.: On dynamical systems with piecewise defined system functions. In: Proceedings of International Conference Tools for Mathematical Modelling (Mathtols’99), St. Petersburg, pp. 4–20 (1999)Google Scholar
  32. 32.
    Avrutin, V., Granados, A., Schanz, M.: Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional map. Nonlinearity 24, 2575–2598 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gardini, L., Avrutin, V., Sushko, I.: Codimension-2 border collision bifurcations in one-dimensional discontinuous piecewise smooth maps. Int. J. Bifurc. Chaos 24, 1450024 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Rocha, J.L., Taha, A.-K., Fournier-Prunaret, D.: Symbolic dynamics and big bang bifurcation in Weibull–Gompertz–Fréchet’s growth models. Appl. Math. Inf. Sci. 9(5), 2377–2388 (2015)MathSciNetGoogle Scholar
  35. 35.
    Rocha, J.L., Taha, A.-K., Fournier-Prunaret, D.: Explosion birth and extinction: double big bang bifurcations and Allee effect in Tsoularis–Wallace’s growth models. Discret. Contin. Dyn. Syst. Ser. B 20(9), 3131–3163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. Leonel Rocha
    • 1
    Email author
  • Abdel-Kaddous Taha
    • 2
  • Danièle Fournier-Prunaret
    • 3
  1. 1.ADM, ISEL-Instituto Sup. de Engenharia de LisboaInstituto Politécnico de LisboaLisboaPortugal
  2. 2.INSAUniversity of ToulouseToulouseFrance
  3. 3.LAAS-CNRS, INSAUniversity of ToulouseToulouseFrance

Personalised recommendations