Skip to main content
Log in

A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation

  • Original Article
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The present paper reports the design, analysis and experimental implementation of a simple first-order nonlinear time-delay dynamical system, which is capable of showing chaotic and hyperchaotic oscillations even at low values of intrinsic time delay. The system consists of a nonlinearity that has a closed-form mathematical function, which enables one to derive exact stability and bifurcation conditions. A detailed stability and bifurcation analyses reveal that a limit cycle is born via a supercritical Hopf bifurcation. Also, we observe both mono-scroll and double-scroll chaotic and hyperchaotic attractors even for a small value of time delay. The complexity of the system is characterized by bifurcation diagram and Lyapunov exponent spectrum. We implement the system in an electronic circuit, and a data acquisition (DAQ) system with LabView environment is used to visualize the experimental bifurcation diagram along with the other characteristic diagrams, namely time series waveform, phase plane plots and frequency spectra. Experimental observations agree well with the analytical and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control system. Science 197, 287–289 (1977)

    Article  Google Scholar 

  2. Ikeda, K., Daido, H., Akimoto, O.: Optical turbulence: chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709–712 (1980)

    Article  Google Scholar 

  3. Wei, J., Yu, C.: Stability and bifurcation analysis in the cross-coupled laser model with delay. Nonlinear Dyn. 66, 29–38 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Yongzhen, P., Shuping, L., Changguo, L.: Effect of delay on a predatorprey model with parasitic infection. Nonlinear Dyn. 63, 311–321 (2011)

    Article  MathSciNet  Google Scholar 

  5. Pei, L., Wang, Q., Shi, H.: Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay. Nonlinear Dyn. 63, 417–427 (2011)

    Article  MathSciNet  Google Scholar 

  6. Boutle, I., Taylor, R.H.S., Romer, R.A.: El Niño and the delayed action oscillator. Am. J. Phys. 75, 15–24 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Driver, R.D.: A neutral system with state dependent delay. J. Differ. Equ. 54, 73 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liao, X., Guo, S., Li, C.: Stability and bifurcation analysis in tri-neuron model with time delay. Nonlinear Dyn. 49, 319–345 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Le, L.B., Konishi, K., Hara, N.: Design and experimental verification of multiple delay feedback control for time-delay nonlinear oscillators. Nonlinear Dyn. 67, 1407–1418 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Banerjee, T.: Single amplifier biquad based inductor-free Chuas circuit. Nonlinear Dyn. 68, 565–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Peng, J.H., Ding, E.J., Ding, M., Yang, W.: Synchronizing hyperchaos with a scalar transmitted signal. Phys. Rev. Lett. 76, 904–907 (1996)

    Article  Google Scholar 

  13. Perez, G., Cerdeira, H.: Extracting messages masked by chaos. Phys. Rev. Lett. 74, 1970–1973 (1995)

    Article  Google Scholar 

  14. Ji, J.C., Hansen, C.H., Li, X.: Effect of external excitations on a nonlinear system with time delay. Nonlinear Dyn. 41, 385–402 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Uçar, A.: On the chaotic behaviour of a prototype delayed dynamical system. Chaos Solitons Fractals 16, 187–194 (2003)

    Article  MATH  Google Scholar 

  16. Sprott, J.C.: A simple chaotic delay differential equation. Phys. Lett. A 366, 397–402 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kye, W.-H., Choi, M., Kurdoglyan, M.S., Kim, C.-M., Park, Y.-J.: Synchronization of chaotic oscillators due to common delay time modulation. Phys. Rev. E 70, 046211 (2004)

    Article  Google Scholar 

  18. Ando, B., Graziani, S.: Stochastic Resonance: Theory and Applications. Kluwer, Norwell (2000)

    Book  Google Scholar 

  19. Fortuna, L., Frasca, M., Rizzo, A.: Chaotic pulse position modulation to improve the efficiency of sonar sensors. IEEE Trans. Instrum. Meas. 52, 1809–1814 (2003)

    Article  Google Scholar 

  20. Buscarino, A., Fortuna, A., Frasca, M., Muscato, G.: Chaos does help motion control. Int. J. Bifurc. Chaos 17, 3577–3581 (2007)

    Article  MATH  Google Scholar 

  21. Muthukumar, P., Balasubramaniam, P.: Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dyn. 74, 1169–1181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chain, Kai, Kuo, Wen-Chung: A new digital signature scheme based on chaotic maps. Nonlinear Dyn. 74, 1003–1012 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Özkaynak, F.: Cryptographically secure random number generator with chaotic additional input. Nonlinear Dyn. 78, 2015–2020 (2014)

    Article  Google Scholar 

  24. Namajunas, A., Pyragas, K., Tamaševičius, A.: An electronic analog of the MackeyGlass system. Phys. Lett. A 201, 42–46 (1995)

    Article  Google Scholar 

  25. Lu, H., He, Z.: Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43, 700–702 (1996)

    Article  Google Scholar 

  26. Tian, Y.C., Gao, F.: Adaptive control of chaotic continuous-time systems with delay. Physica D 108, 113 (1997)

    Article  MathSciNet  Google Scholar 

  27. Lu, H., He, Y., He, Z.: A chaos-generator: analysis of complex dynamics of a cell equation in delayed cellular neural networks. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 45, 178–181 (1998)

    Article  MathSciNet  Google Scholar 

  28. Mykolaitis, G., Tamaševičius, A., Čenys, A., Bumeliené, S., Anagnostopoulos, A.N., Kalkan, N.: Very high and ultrahigh frequency hyperchaotic oscillators with delay line. Chaos Solitons Fractals 17, 343 (2003)

    Article  MATH  Google Scholar 

  29. Tamaševičius, A., Mykolaitis, G., Bumeliené, S.: Delayed feedback chaotic oscillator with improved spectral characteristics. Electron. Lett. 42, 736–737 (2006)

    Article  Google Scholar 

  30. Tamaševičius, A., Pyragine, T., Meskauskas, M.: Two scroll attractor in a delay dynamical system. Int. J. Bifurc. Chaos 17(10), 3455–3460 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yalçin, M.E., Ozoguz, S.: N-scroll chaotic attractors from a first-order time-delay differential equation. Chaos 17, 033112(8) (2007)

    Article  MATH  Google Scholar 

  32. Srinivasan, K., Raja Mohamed, I., Murali, K., Lakshmanan, M., Sinha, S.: Design of time delayed chaotic circuit with threshold controller. Int. J. Bifurc. Chaos 20, 2185–2191 (2010)

  33. Buscarino, A., Fortuna, L., Frasca, M., Sciuto, G.: Design of time-delay chaotic electronic circuits. IEEE Trans. Circuits Syst. I 58, 1888–1896 (2011)

    Article  MathSciNet  Google Scholar 

  34. Pham, V.-T., Fortuna, L., Frasca, M.: Implementation of chaotic circuits with a digital time-delay block. Nonlinear Dyn. 67, 345–355 (2012)

    Article  Google Scholar 

  35. Banerjee, T., Biswas, D., Sarkar, B.C.: Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn. 70, 721–734 (2012)

    Article  MathSciNet  Google Scholar 

  36. Banerjee, T., Biswas, D.: Theory and experiment of a first-order chaotic delay dynamical system. Int. J. Bifurc. Chaos. 23(6), 1330020 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ablay, G.: Novel chaotic delay systems and electronic circuit solutions. Nonlinear Dyn. 81, 1795–1804 (2015)

    Article  MathSciNet  Google Scholar 

  38. Tse, C.: Experimental techniques for investigating chaos in electronics. In: Chen, G., Ueta, T. (eds.) Chaos in Circuits and Systems, Chap. 18, 367–384. World Scientific, Singapore (2002)

  39. Rocha, R., Andrucioli, G.L.D., Medrano-T, R.O.: Experimental characterization of nonlinear systems: a real-time evaluation of the analogous Chuas circuit behaviour. Nonlinear Dyn. 62, 237–251 (2010)

    Article  MATH  Google Scholar 

  40. LabVIEW (2014), National Instrument. (http://www.ni.com/labview/)

  41. Pathria, R.K., Beale, D.P.: Statistical Mechanics, 3rd edn. Academic Press, UK (2011)

    MATH  Google Scholar 

  42. Sedra, A.S., Smith, K.C.: Microelectronic Circuits. Oxford Univ. Press, Oxford (2003)

    Google Scholar 

  43. Meng, J., Wang, X.: Robust anti-synchronization of a class of delayed chaotic neural networks. Chaos 17, 023113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wei, F., Cai, Y.: Existence, uniqueness and stability of the solution to neutral stochastic functional differential equations with infinite delay under non-Lipschitz conditions. Adv. Differ. Equ. 2013, 151 (2013)

    Article  MathSciNet  Google Scholar 

  45. Tan, L., Lei, D.: The averaging method for stochastic differential delay equations under non-Lipschitz conditions. Adv. Differ. Equ. 2013, 38 (2013)

    Article  MathSciNet  Google Scholar 

  46. Sun, W., Zhang, S.: Existence and approximation of solutions for discontinuous functional differential equations. J. Math. Anal. Appl. 270, 307–318 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  47. Figueroa, R.: On the discontinuous second-order deviated Dirichlet problem with non-monotone conditions. Math. Nachr. 288(23), 176–184 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wei, J.: Bifurcation analysis in a scalar delay differential equation. Nonlinearity 20, 2483–2498 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Farmer, J.D.: Chaotic attractor of an infinite dimensional dynamical system. Physica D 4, 366–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  50. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17, 1079–1107 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems: from hidden oscillations in Hilbert–Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

D.B.gratefully acknowledges the financial support provided by the University of Burdwan, West Bengal, India. T.B. acknowledges the financial support from SERB (DST) [SB/FTP/PS-005/2013].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, D., Banerjee, T. A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dyn 83, 2331–2347 (2016). https://doi.org/10.1007/s11071-015-2484-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2484-4

Keywords

Navigation