Nonlinear Dynamics

, Volume 83, Issue 4, pp 1885–1893 | Cite as

Generalization of combination–combination synchronization of chaotic n-dimensional fractional-order dynamical systems

  • Gamal M. MahmoudEmail author
  • Tarek M. Abed-Elhameed
  • Mansour E. Ahmed
Original Paper


The generalization of combination–combination (C–C) synchronization of chaotic n-dimensional (nD) fractional-order \((0<\alpha \le 1)\) dynamical systems is studied. Firstly, we replace arbitrary four chaotic nD ordinary dynamical systems by four chaotic nD fractional-order dynamical systems which have unique solutions. Secondly, we extend the scheme of a recent paper (Sun et al. in Nonlinear Dyn 73: 1211–1222, 2013) to study the generalization of C–C synchronization among four nD fractional-order dynamical systems. Examples of combination–combination synchronization among four identical or different of 6D chaotic fractional-order systems are discussed. The analytical formula of the control functions is tested numerically to achieve C–C synchronization, and good agreement is found.


Combination–combination synchronization Chaotic dynamical system Fractional-order dynamical system 


  1. 1.
    Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)zbMATHGoogle Scholar
  2. 2.
    Su, N.: N-dimensional fractional Fokker–Planck equation and its solutions for anomalous radial two-phase flow in porous media. Appl. Math. Comput. 213, 506–515 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Kaslik, E., Sivasundaram, S.: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 32, 245–256 (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRefGoogle Scholar
  5. 5.
    Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J Math. Phys. 47, 082104 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gökdogan, A., Yildirim, A., Merdan, M.: Solving a fractional order model of HIV infection of \({\rm CD}^4+{\rm T}\) cells. Math. Comput. Modell. 54, 2132–2138 (2011)Google Scholar
  7. 7.
    Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuit Syst. I(42), 485–490 (1995)CrossRefGoogle Scholar
  8. 8.
    Grigorenko, I., Grigorenko, E.: Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 91, 034101 (2003)CrossRefGoogle Scholar
  9. 9.
    Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22, 549–554 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Lu, J.G.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006)CrossRefGoogle Scholar
  11. 11.
    Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42, 1684–1691 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Daftardar-Gejji, V., Bhalekar, S.: Chaos in fractional ordered Liu system. Comput. Math. Appl. 59, 1117–1127 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Taghvafard, H., Erjaee, G.H.: Phase and anti-phase synchronization of fractional order chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16, 4079–4088 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Xingyuan, W., Yijie, H.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372, 435–441 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shahverdiev, E.M., Sivaprakasam, S., Shore, K.A.: Lag synchronization in time-delayed systems. Phys. Lett. A 292, 320–324 (2002)Google Scholar
  17. 17.
    Sun, J., Shen, Y., Zhang, G., Xu, C., Cui, G.: Combination–combination synchronization among four identical or different chaotic systems. Nonlinear Dyn. 73, 1211–1222 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  19. 19.
    El-Sayed, A.M.A., Ahmed, E., Herzallah, M.A.E.: On the fractional-order game with non-uniform interaction rate and asymmetric games. J. Fract. Calc. Appl. 1, 1–9 (2011)Google Scholar
  20. 20.
    Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: Dynamical properties and synchronization of complex non-linear equations for detuned lasers. Dyn. Syst. 24(1), 63–79 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Mahmoud, G.M., Bountis, T., Abdel-Latif, G.M., Mahmoud, E.E.: Chaos synchronization of two different chaotic complex Chen and Lü systems. Nonlinear Dyn. 55, 43–53 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Luo, C., Wang, X.: Chaos in the fractional-order complex Lorenz system and its synchronization. Nonlinear Dyn. 71, 241–257 (2013)CrossRefzbMATHGoogle Scholar
  24. 24.
    Fowler, A.C., Gibbon, J.D., McGuinnes, M.J.: The real and complex Lorenz equations and their relevance to physical systems. Physica D 7, 126–134 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Mahmoud, G.M., Al-Kashif, M.A., Aly, S.A.: Basic properties and chaotic synchronization of complex Lorenz system. Int. J. Mod. Phys. C 18, 253–265 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Mahmoud, G.M., Ahmed, M.E.: Modified projective synchronization and control of complex Chen and Lü systems. J. Vib. Control 17, 1184–1194 (2010)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Gamal M. Mahmoud
    • 1
    Email author
  • Tarek M. Abed-Elhameed
    • 1
  • Mansour E. Ahmed
    • 1
    • 2
  1. 1.Department of Mathematics, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Department of Mathematics, Faculty of University College in AljamoumUmm Al-Qura UniversityMakkahKingdom of Saudi Arabia

Personalised recommendations