Abstract
In this paper, we introduce a mathematical framework that allows the designer to consider more of the proposed ideas and options in conceptual design phase into the design process. The proposed model allows for dynamical relationship between the system’s high-level requirements and the detailed design parameters, where an optimization engine can optimize over the design parameters and variables for a given range in the requirement. This is done by proposing an input/output block structure named recursive design modular (RDM). The output of RDM is the functions that the system supposes to perform at particular level. The input of RDM is the design parameters that control the required behaviour through a set of mapping or transformation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Boland Jr, R.J.: The process and product of system design. Manag. Sci. 24(9), 887–898 (1978)
Blanchard, B.S., Fabrycky, W.J., Fabrycky, W.J.: Systems Engineering and Analysis. Prentice Hall Englewood Cliffs, New Jersey (1990)
Kroll, E., Condoor, S., Jansson, D.: Innovative Conceptual Design: Theory and Application of Parameter Analysis. Cambridge University Press, Cambridge (2001)
Waldo, J.: On system design. In ACM SIGPLAN Notices, vol. 41, no. 10, pp. 467–480. ACM (2006)
Aronson, J., Liang, T., Turban, E.: Decision Support Systems and Intelligent Systems. Andi, Yoyakarta (2005)
Marston, M., Mistree, F.: A decision-based foundation for systems design: a conceptual exposition. In CIRP 1997 International Design Seminar Proceedings on Multimedia Technologies for Collaborative Design and Manufacturing, pp. 1–11. University of Southern California, Los Angeles, CA (1997)
Kalsi, M., Hacker, K., Lewis, K.: Decision Trade-Offs in Complex Systems Design Using a Conceptual Robustness Approach. In The Third World Congress of Structural and Multidisciplinary Optimization (1999)
Austin-Breneman, J., Honda, T., Yang, M.C.: A study of student design team behaviors in complex system design. J. Mech. Des. 134(12), 124504 (2012)
Senge, P.M.: The fifth discipline. Meas. Bus. Excell. 1(3), 46–51 (1997)
ISO/IEC 15288: Systems and Software Engineering System Life Cycle Processes (2008)
Leontief, W.: Input–Output Economics. Oxford University Press, Oxford (1986)
Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann, Burlington (2011)
Estefan, J.A.: Survey of Model-Based Systems Engineering (mbse) Methodologies. Jet Propulsion Laboratory California Institute of Technology Pasadena. California, USA (2008)
Ramos, A.L., Ferreira, J.V., Barceló, J.: Model-based systems engineering: an emerging approach for modern systems. IEEE Trans. Syst. Man Cybern. Part. C Appl. Rev. 42(1), 101–111 (2012)
Weilkiens, T.: Systems Engineering with SysML/UML: Modeling, Analysis, Design. Morgan Kaufmann, Burlington (2011)
Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm; with CD-ROM, vol. 1. Springer, Berlin (2002)
Tiller, M.: Introduction to Physical Modeling with Modelica. Springer, Berlin (2001)
Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.: Collaborative modelling and co-simulation in the development of dependable embedded systems. In Integrated Formal Methods. pp. 12–26. Springer, Berlin (2010)
Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity-the ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)
Ptolemaeus, C.: System Design, Modeling, and Simulation: Using Ptolemy II. Ptolemy. org (2014)
Suh, N.P., Sekimoto, S.: Design of thinking design machine. CIRP Ann. Manuf. Technol. 39(1), 145–148 (1990)
Suh, N.: Axiomatic Design: Advances and Applications. MIT-Pappalardo Series in Mechanical Engineering. Oxford University Press, Oxford (2001)
Wymore, A.: Model-Based Systems Engineering ser. Systems Engineering. Taylor & Francis, New York (1993)
Kulak, O., Cebi, S., Kahraman, C.: Applications of axiomatic design principles: a literature review. Expert Syst. Appl. 37(9), 6705–6717 (2010)
Bae, S., Lee, J.M., Chu, C.N.: Axiomatic design of automotive suspension systems. CIRP Ann. Manuf. Technol. 51(1), 115–118 (2002)
Thielman, J., Ge, P.: Applying axiomatic design theory to the evaluation and optimization of large-scale engineering systems. J. Eng. Des. 17(1), 1–16 (2006)
Helander, M.G.: Using design equations to identify sources of complexity in human-machine interaction. Theor. Issues Ergon. Sci. 8(2), 123–146 (2007)
Kim, D.-E., Chung, K.-H., Cha, K.-H.: Tribological design methods for minimum surface damage of hdd slider. Tribol. Int. 36(4), 467–473 (2003)
Kulak, O., Kahraman, C.: Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Inf. Sci. 170(2), 191–210 (2005)
Kulak, O., Kahraman, C.: Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. Int. J. Prod. Econ. 95(3), 415–424 (2005)
Cebi, S., Kahraman, C.: Extension of axiomatic design principles under fuzzy environment. Expert Syst. Appl. 37(3), 2682–2689 (2010)
Cloutier, R., Muller, G., Verma, D., Nilchiani, R., Hole, E., Bone, M.: The concept of reference architectures. Syst. Eng. 13(1), 14–27 (2010)
Migdalas, A., Pardalos, P., Värbrand, P.: Multilevel Optimization: Algorithms and Applications. Nonconvex Optimization and Its Applications. Springer, Berlin (1998)
Siljak, D., Sundareshan, M.: A multilevel optimization of large-scale dynamic systems. IEEE Transactions on Automatic Control 21(1), 79–84 (1976)
Frandi, E., Papini, A.: Coordinate search algorithms in multilevel optimization. Optim. Methods Softw. 29(5), 1020–1041 (2014)
Pettersson, H., Rodiouchkina, M., Micklow, G., et al.: Multidisciplinary Design Optimization for Automotive Design Systems. SAE Technical Paper. Tech. Rep. (2015)
Sarker, R., Elsayed, S., Ray, T.: Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans. Evol. Comput. 18(5), 689–707 (2014)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Deb, K.: An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 186(2), 311–338 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mabrok, M.A., Elsayed, S. & Ryan, M.J. Mathematical framework for recursive model-based system design. Nonlinear Dyn 84, 223–236 (2016). https://doi.org/10.1007/s11071-015-2418-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-015-2418-1