Skip to main content
Log in

Experimental verification of the vibro-impact capsule model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an experimental verification of the vibro-impact capsule model proposed by Liu et al. in (Int. J. Mech. Sci, 66:2–11; 2013a, Int. J. Mech. Sci, 72:39–54; 2013b, Int. J. Non-Linear Mech., 70, 30–46; 2015) is presented. The capsule dynamics is investigated experimentally by varying the stiffness of the support spring, and the frequency and the amplitude of excitation. The novel design of the experimental set-up is discussed, and comparisons between the experiments and numerical simulations are presented showing a good agreement. The conducted bifurcation analysis indicates that the behaviour of the system is mainly periodic and that a fine tuning of the control parameters can significantly improve the performance of the system. The main findings provide a better insight into the vibro-impact systems subject to nonlinear friction, and the experimental rig can be used to predict the dynamic behaviour of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liu, Y., Wiercigroch, M., Pavlovskaia, E., Yu, H.: Modelling of a vibro-impact capsule system. Int. J. Mech. Sci. 66, 2–11 (2013)

    Article  Google Scholar 

  2. Liu, Y., Pavlovskaia, E., Hendry, D., Wiercigroch, M.: Vibro-impact responses of capsule system with various friction models. Int. J. Mech. Sci. 72, 39–54 (2013)

    Article  Google Scholar 

  3. Liu, Y., Pavlovskaia, E., Wiercigroch, M., Peng, Z.: Forward and backward motion control of a vibro-impact capsule system. Int. J. Non-Linear Mech. 70, 30–46 (2015)

    Article  Google Scholar 

  4. Li, H., Furuta, K., Chernousko, F.L.: Motion generation of the Capsubot using internal force and static friction. In: IEEE International Conference on Decision and Control, pp. 6575–6580 (2006)

  5. Chernousko, F.L.: The optimal periodic motions of a two-mass system in a resistant medium. J. Appl. Math. Mech. 72, 116–125 (2008)

    Article  MathSciNet  Google Scholar 

  6. Fang, H.B., Xu, J.: Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium. J. Sound Vib. 330, 4002–4018 (2011)

    Article  Google Scholar 

  7. Chernousko, F.L.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66, 1–7 (2002)

    Article  MathSciNet  Google Scholar 

  8. Nakamura, T., Terano, A.: Capsule endoscopy: past, present, and future. J. Gastroenterol. 43, 93–99 (2008)

    Article  Google Scholar 

  9. Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)

    Article  Google Scholar 

  10. Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)

    Article  Google Scholar 

  11. Gao, M.Y., Hu, C.Z., Chen, Z.Z., Zhang, H.H., Liu, S.: Design and fabrication of a magnetic propulsion system for self-propelled capsule endoscope. IEEE Trans. Biomed. Eng. 57, 2891–2902 (2010)

    Article  Google Scholar 

  12. Zhang, C., Liu, H., Tan, R.J., Li, H.Y.: Modeling of velocity-dependent frictional resistance of a capsule robot inside an intestine. Tribol. Lett. 47, 295–301 (2012)

    Article  Google Scholar 

  13. Savi, M.A., Divenyi, S., Franca, L.F.P., Weber, H.I.: Numerical and experimental investigations of the nonlinear dynamics and chaos in non-smooth systems. J. Sound Vib. 301, 59–73 (2007)

    Article  Google Scholar 

  14. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Bifurcation analysis and an impact oscillator with a one-sided elastic constraint near grazing. Phys. D 239, 312–321 (2010)

    Article  MATH  Google Scholar 

  15. Aguiar, R.R., Weber, H.I.: Mathematical modeling and experimental investigation of an embedded vibro-impact system. Nonlinear Dyn. 65, 317–334 (2011)

    Article  Google Scholar 

  16. Pavlovskaia, E., Wiercigroch, M., Grebogi, C.: Modeling of an impact system with a drift. Phys. Rev. E 64, 056224 (2001)

    Article  Google Scholar 

  17. Pavlovskaia, E., Wiercigroch, M.: Periodic solution finder for an impact oscillator with a drift. J. Sound Vib. 267, 893–911 (2003)

    Article  Google Scholar 

  18. Luo, G.W., Lv, X.H.: Controlling bifurcation and chaos of a plastic impact oscillator. Nonlinear Anal.: Real World Appl. 10, 2047–2061 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nguyen, V.D., Woo, K.C., Pavlovskaia, E.: Experimental study and mathematical modelling of a new of vibro-impact moling device. Int. J. Non-Linear Mech. 43, 542–550 (2008)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Dr. Yang Liu would like to acknowledge the financial support for the Small Research Grant (31841) by the Carnegie Trust for the Universities of Scotland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Pavlovskaia, E. & Wiercigroch, M. Experimental verification of the vibro-impact capsule model. Nonlinear Dyn 83, 1029–1041 (2016). https://doi.org/10.1007/s11071-015-2385-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2385-6

Keywords

Navigation