Skip to main content
Log in

Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The electric activities of neurons serve as a foundation for normal brain functions. Electromagnetic radiation has a significant impact on neuronal activity in the brain, especially when cell phone is used extensively. To understand this mechanism, we developed a mathematical model aiming at describing the effect of electromagnetic radiation on neuronal firing activity by introducing an additional membrane current into the Hodgkin–Huxley neuron model. The results show that the neuronal firing activity of a single neuron can be suppressed by electromagnetic radiation. Besides, the spatiotemporal patterns of neuronal network are also suppressed from the stable propagating wave state to a homogeneous resting state. Our studies suggest that the electromagnetic radiation has a suppressive effect on neuronal firing activities, especially on the collective electric activities of neuronal network that is related to information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adey, W.R.: Introduction: effect of electromagnetic radiation on the nervous system. Ann. N.Y. Acad. Sci. 247, 15–20 (1975)

    Article  Google Scholar 

  2. Persson, B.R., Salford, L.G., Brun, A., Eberhardt, J.L., Malmgren, L.: Increased permeability of the blood–brain barrier induced by magnetic and electromagnetic fields. Ann. N.Y. Acad. Sci. 649, 356–358 (1992)

    Article  Google Scholar 

  3. Rianne, S.: Electromagnetic fields and the blood–brain barrier. Brain Res. Rev. 65, 80–95 (2010)

    Article  Google Scholar 

  4. Sirav, B., Seyhan, N.: Effects of radiofrequency radiation exposure on blood–brain barrier permeability in male and female rats. Electromagn. Biol. Med. 30(4), 253–260 (2011)

    Article  Google Scholar 

  5. Zhao, T.Y., Zou, S.P., Pamela, E.K.: Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412, 34–38 (2007)

    Article  Google Scholar 

  6. Sylvie, B., Amandine, M., Faraj, T., Philippe, L., Alice, C., Catherine, Y.: Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 34, 52–60 (2013)

    Article  Google Scholar 

  7. Sakurai, T., Kiyokawa, T., Narita, E., Suzuki, Y., Taki, M., Miyakoshi, J.: Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. J. Rad. Res. 52, 185–192 (2011)

    Article  Google Scholar 

  8. Juan, C., Trivino, P., Settimio, G., Monia, T., Ilaria, N., Caterina, C.: Microwave electromagnetic field regulates gene expression in T-lymphoblastoid leukemia CCRF-CEM cell line exposed to 900 MHz. Electromag. Biol. Med. 31, 1–18 (2012)

    Article  Google Scholar 

  9. Semra, T.C., Nesrin, S.: Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int. J. Rad. Biol. 88, 420–424 (2012)

    Article  Google Scholar 

  10. Kesari, K.K., Siddiqui, M.H., Meena, R., Verma, H.N., Kumar, S.: Cell phone radiation exposure on brain and associated biological systems. Indian J. Exp. Biol. 51(3), 187–200 (2013)

    Google Scholar 

  11. Wu, J.Y., Huang, X.Y., Zhuang, C.: Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14, 487–503 (2008)

    Article  Google Scholar 

  12. Tim, W., Kentaroh, T., Michael, T.L., Jürgen, G., Frank, W.O.: Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci. 14, 78–96 (2013)

    Article  Google Scholar 

  13. Takahashi, K., Saleh, M., Penn, R.D., Hatsopoulos, N.G.: Propagating waves in human motor cortex. Front. Hum. Neurosci. 5, 1–8 (2011)

    Article  Google Scholar 

  14. Xu, W., Huang, X., Takagaki, K., Wu, J.Y.: Compression and reflection of visually evoked cortical waves. Neuron 55, 119–129 (2007)

    Article  Google Scholar 

  15. Doug, R., Kay, A.R., Nicholas, G.H.: Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1558 (2006)

    Article  Google Scholar 

  16. James, F.A.P., Carl, C.H.P.: Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008)

    Article  Google Scholar 

  17. Gordon, C.J., Long, M.D., Fehlner, K.S., Stead, A.G.: Body temperature in the mouse, hamster, and rat exposed to radiofrequency radiation: an interspecies comparison. J. Thermal Biol. 11, 59–65 (1986)

    Article  Google Scholar 

  18. Adair, E.R., Adams, B.W.: Behavioral thermoregulation in the squirrel monkey: adaptation processes during prolonged microwave exposure. Behav. Neurosci. 97, 49–61 (1983)

    Article  Google Scholar 

  19. Wachtel, H., Seaman, R., Joines, W.: Effects of low-intensity microwave on isolated neurons. Ann. N.Y. Acad. Sci. 247, 46–62 (1975)

    Article  Google Scholar 

  20. Chou, C.K., Guy, A.W.: Effects of electromagnetic fields on isolated nerve and muscle preparations. IEEE Trans. Microw. Theory Tech. 26, 141–147 (1978)

    Article  Google Scholar 

  21. Cain, C.A.: A theoretical basis for microwave and RF field effects on excitable cellular membranes. IEEE Trans. Microw. Theory Tech. 28, 142–147 (1980)

    Article  Google Scholar 

  22. Apollonio, F., Liberti, M., D’Inzeo, G., Tarricone, L.: Integrated models for the analysis of biological effects of EM fields used for mobile communications. IEEE Trans. Microw. Theory Tech. 48, 2082–2093 (2000)

    Article  Google Scholar 

  23. Giannì, M., Liberti, M., Apollonio, F., D’Inzeo, G.: Modeling electromagnetic fields detectability in a HH-like neuronal system: stochastic resonance and window behavior. Biol. Cybern. 94, 118–127 (2006)

    Article  MATH  Google Scholar 

  24. Apollonio, F., Liberti, M., Paffi, A., Merla, C., Marracino, P., Denzi, A., Marino, C., d’Inzeo, G.: Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach, microwave theory and techniques. IEEE Trans. Microw. Theory Tech. 61, 2031–2045 (2013)

    Article  Google Scholar 

  25. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  26. McCormick, D.A., Shu, Y.S., Yu, Y.G.: Hodgkin and Huxley model-still standing? Nature 445, E1–E2 (2007)

    Article  Google Scholar 

  27. Yu, Y.G., Hill, A.P., McCormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8, 1–16 (2012)

    Google Scholar 

  28. Foust, A.J., Yu, Y.G., Popovic, M., Zecevic, D., McCormick, D.A.: Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J. Neurosci. 31, 15490–15498 (2011)

    Article  Google Scholar 

  29. Moujahid, A., d’Anjou, A., Torrealdea, F.J.: Energy and information in Hodgkin–Huxley neurons. Phys. Rev. E. 83, 031912 (2011)

    Article  MathSciNet  Google Scholar 

  30. Moujahid, A., d’Anjou, A., Torrealdea, F.J., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fract. 44, 929–933 (2011)

    Article  Google Scholar 

  31. Torrealdea, F.J., Sarasola, C., Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fract. 40, 60–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Torrealdea, F.J., Sarasola, C., d’Anjoua, A., Moujahida, A., de Mendizábalc, N.V.: Energy efficiency of information transmission by electrically coupled neurons. BioSystems 97, 60–71 (2009)

    Article  Google Scholar 

  33. Ma, J., Hu, B.L., Wang, C.N., Jin, W.Y.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)

    Article  MathSciNet  Google Scholar 

  34. Ma, J., Huang, L., Tang, J., Ying, H.P., Jin, W.Y.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 17, 4281–4293 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)

    Article  MATH  Google Scholar 

  36. Liu, S.B., Wu, Y., Li, J.J., Xie, Y., Tan, N.: The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks. Nonlinear Dyn. 73, 1055–1063 (2013)

    Article  MathSciNet  Google Scholar 

  37. Wu, Y., Li, J.J., Liu, S.B., Pang, J.Z., Du, M.M., Lin, P.: Noise-induced spatiotemporal patterns in Hodgkin–Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013)

    Article  Google Scholar 

  38. Ren, G.D., Wu, G., Ma, J., Chen, Y.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 58702–058702 (2015)

  39. Qin, H.X., Ma, J., Jin, W.Y., Wang, C.N.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jun Ma and Jinzhi Lei for their helpful comments. This work was supported by the National Natural Science Foundation of China (No. 11472202 and No.11272242) and the Natural Science Foundation in Shaanxi Province of China (No. S2014JC12575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, S., Liu, W. et al. Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dyn 83, 801–810 (2016). https://doi.org/10.1007/s11071-015-2368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2368-7

Keywords

Navigation