Nonlinear Dynamics

, Volume 83, Issue 1–2, pp 801–810 | Cite as

Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation

  • Jiajia Li
  • Shaobao Liu
  • Weiming Liu
  • Yuguo Yu
  • Ying Wu
Original Paper


The electric activities of neurons serve as a foundation for normal brain functions. Electromagnetic radiation has a significant impact on neuronal activity in the brain, especially when cell phone is used extensively. To understand this mechanism, we developed a mathematical model aiming at describing the effect of electromagnetic radiation on neuronal firing activity by introducing an additional membrane current into the Hodgkin–Huxley neuron model. The results show that the neuronal firing activity of a single neuron can be suppressed by electromagnetic radiation. Besides, the spatiotemporal patterns of neuronal network are also suppressed from the stable propagating wave state to a homogeneous resting state. Our studies suggest that the electromagnetic radiation has a suppressive effect on neuronal firing activities, especially on the collective electric activities of neuronal network that is related to information processing.


Electromagnetic radiation Absorbed power Firing dynamics 



We thank Dr. Jun Ma and Jinzhi Lei for their helpful comments. This work was supported by the National Natural Science Foundation of China (No. 11472202 and No.11272242) and the Natural Science Foundation in Shaanxi Province of China (No. S2014JC12575).


  1. 1.
    Adey, W.R.: Introduction: effect of electromagnetic radiation on the nervous system. Ann. N.Y. Acad. Sci. 247, 15–20 (1975)CrossRefGoogle Scholar
  2. 2.
    Persson, B.R., Salford, L.G., Brun, A., Eberhardt, J.L., Malmgren, L.: Increased permeability of the blood–brain barrier induced by magnetic and electromagnetic fields. Ann. N.Y. Acad. Sci. 649, 356–358 (1992)CrossRefGoogle Scholar
  3. 3.
    Rianne, S.: Electromagnetic fields and the blood–brain barrier. Brain Res. Rev. 65, 80–95 (2010)CrossRefGoogle Scholar
  4. 4.
    Sirav, B., Seyhan, N.: Effects of radiofrequency radiation exposure on blood–brain barrier permeability in male and female rats. Electromagn. Biol. Med. 30(4), 253–260 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhao, T.Y., Zou, S.P., Pamela, E.K.: Exposure to cell phone radiation up-regulates apoptosis genes in primary cultures of neurons and astrocytes. Neurosci. Lett. 412, 34–38 (2007)CrossRefGoogle Scholar
  6. 6.
    Sylvie, B., Amandine, M., Faraj, T., Philippe, L., Alice, C., Catherine, Y.: Study of p53 expression and post-transcriptional modifications after GSM-900 radiofrequency exposure of human amniotic cells. Bioelectromagnetics 34, 52–60 (2013)CrossRefGoogle Scholar
  7. 7.
    Sakurai, T., Kiyokawa, T., Narita, E., Suzuki, Y., Taki, M., Miyakoshi, J.: Analysis of gene expression in a human-derived glial cell line exposed to 2.45 GHz continuous radiofrequency electromagnetic fields. J. Rad. Res. 52, 185–192 (2011)CrossRefGoogle Scholar
  8. 8.
    Juan, C., Trivino, P., Settimio, G., Monia, T., Ilaria, N., Caterina, C.: Microwave electromagnetic field regulates gene expression in T-lymphoblastoid leukemia CCRF-CEM cell line exposed to 900 MHz. Electromag. Biol. Med. 31, 1–18 (2012)CrossRefGoogle Scholar
  9. 9.
    Semra, T.C., Nesrin, S.: Single-strand DNA breaks in human hair root cells exposed to mobile phone radiation. Int. J. Rad. Biol. 88, 420–424 (2012)CrossRefGoogle Scholar
  10. 10.
    Kesari, K.K., Siddiqui, M.H., Meena, R., Verma, H.N., Kumar, S.: Cell phone radiation exposure on brain and associated biological systems. Indian J. Exp. Biol. 51(3), 187–200 (2013)Google Scholar
  11. 11.
    Wu, J.Y., Huang, X.Y., Zhuang, C.: Propagating waves of activity in the neocortex: what they are, what they do. Neuroscientist 14, 487–503 (2008)CrossRefGoogle Scholar
  12. 12.
    Tim, W., Kentaroh, T., Michael, T.L., Jürgen, G., Frank, W.O.: Wave propagation of cortical population activity under urethane anesthesia is state dependent. BMC Neurosci. 14, 78–96 (2013)CrossRefGoogle Scholar
  13. 13.
    Takahashi, K., Saleh, M., Penn, R.D., Hatsopoulos, N.G.: Propagating waves in human motor cortex. Front. Hum. Neurosci. 5, 1–8 (2011)CrossRefGoogle Scholar
  14. 14.
    Xu, W., Huang, X., Takagaki, K., Wu, J.Y.: Compression and reflection of visually evoked cortical waves. Neuron 55, 119–129 (2007)CrossRefGoogle Scholar
  15. 15.
    Doug, R., Kay, A.R., Nicholas, G.H.: Propagating waves mediate information transfer in the motor cortex. Nat. Neurosci. 9, 1549–1558 (2006)CrossRefGoogle Scholar
  16. 16.
    James, F.A.P., Carl, C.H.P.: Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885 (2008)CrossRefGoogle Scholar
  17. 17.
    Gordon, C.J., Long, M.D., Fehlner, K.S., Stead, A.G.: Body temperature in the mouse, hamster, and rat exposed to radiofrequency radiation: an interspecies comparison. J. Thermal Biol. 11, 59–65 (1986)CrossRefGoogle Scholar
  18. 18.
    Adair, E.R., Adams, B.W.: Behavioral thermoregulation in the squirrel monkey: adaptation processes during prolonged microwave exposure. Behav. Neurosci. 97, 49–61 (1983)CrossRefGoogle Scholar
  19. 19.
    Wachtel, H., Seaman, R., Joines, W.: Effects of low-intensity microwave on isolated neurons. Ann. N.Y. Acad. Sci. 247, 46–62 (1975)CrossRefGoogle Scholar
  20. 20.
    Chou, C.K., Guy, A.W.: Effects of electromagnetic fields on isolated nerve and muscle preparations. IEEE Trans. Microw. Theory Tech. 26, 141–147 (1978)CrossRefGoogle Scholar
  21. 21.
    Cain, C.A.: A theoretical basis for microwave and RF field effects on excitable cellular membranes. IEEE Trans. Microw. Theory Tech. 28, 142–147 (1980)CrossRefGoogle Scholar
  22. 22.
    Apollonio, F., Liberti, M., D’Inzeo, G., Tarricone, L.: Integrated models for the analysis of biological effects of EM fields used for mobile communications. IEEE Trans. Microw. Theory Tech. 48, 2082–2093 (2000)CrossRefGoogle Scholar
  23. 23.
    Giannì, M., Liberti, M., Apollonio, F., D’Inzeo, G.: Modeling electromagnetic fields detectability in a HH-like neuronal system: stochastic resonance and window behavior. Biol. Cybern. 94, 118–127 (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    Apollonio, F., Liberti, M., Paffi, A., Merla, C., Marracino, P., Denzi, A., Marino, C., d’Inzeo, G.: Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach, microwave theory and techniques. IEEE Trans. Microw. Theory Tech. 61, 2031–2045 (2013)CrossRefGoogle Scholar
  25. 25.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRefGoogle Scholar
  26. 26.
    McCormick, D.A., Shu, Y.S., Yu, Y.G.: Hodgkin and Huxley model-still standing? Nature 445, E1–E2 (2007)CrossRefGoogle Scholar
  27. 27.
    Yu, Y.G., Hill, A.P., McCormick, D.A.: Warm body temperature facilitates energy efficient cortical action potentials. PLoS Comput. Biol. 8, 1–16 (2012)Google Scholar
  28. 28.
    Foust, A.J., Yu, Y.G., Popovic, M., Zecevic, D., McCormick, D.A.: Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons. J. Neurosci. 31, 15490–15498 (2011)CrossRefGoogle Scholar
  29. 29.
    Moujahid, A., d’Anjou, A., Torrealdea, F.J.: Energy and information in Hodgkin–Huxley neurons. Phys. Rev. E. 83, 031912 (2011)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Moujahid, A., d’Anjou, A., Torrealdea, F.J., Torrealdea, F.: Efficient synchronization of structurally adaptive coupled Hindmarsh–Rose neurons. Chaos Solitons Fract. 44, 929–933 (2011)CrossRefGoogle Scholar
  31. 31.
    Torrealdea, F.J., Sarasola, C., Anjou, A.: Energy consumption and information transmission in model neurons. Chaos Solitons Fract. 40, 60–68 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Torrealdea, F.J., Sarasola, C., d’Anjoua, A., Moujahida, A., de Mendizábalc, N.V.: Energy efficiency of information transmission by electrically coupled neurons. BioSystems 97, 60–71 (2009)CrossRefGoogle Scholar
  33. 33.
    Ma, J., Hu, B.L., Wang, C.N., Jin, W.Y.: Simulating the formation of spiral wave in the neuronal system. Nonlinear Dyn. 73, 73–83 (2013)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Ma, J., Huang, L., Tang, J., Ying, H.P., Jin, W.Y.: Spiral wave death, breakup induced by ion channel poisoning on regular Hodgkin–Huxley neuronal networks. Commun. Nonlinear Sci. Numer. Simul. 17, 4281–4293 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012)CrossRefzbMATHGoogle Scholar
  36. 36.
    Liu, S.B., Wu, Y., Li, J.J., Xie, Y., Tan, N.: The dynamic behavior of spiral waves in stochastic Hodgkin–Huxley neuronal networks with ion channel blocks. Nonlinear Dyn. 73, 1055–1063 (2013)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Wu, Y., Li, J.J., Liu, S.B., Pang, J.Z., Du, M.M., Lin, P.: Noise-induced spatiotemporal patterns in Hodgkin–Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013)CrossRefGoogle Scholar
  38. 38.
    Ren, G.D., Wu, G., Ma, J., Chen, Y.: Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Phys. Sin. 64, 58702–058702 (2015)Google Scholar
  39. 39.
    Qin, H.X., Ma, J., Jin, W.Y., Wang, C.N.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jiajia Li
    • 1
  • Shaobao Liu
    • 1
  • Weiming Liu
    • 1
  • Yuguo Yu
    • 2
  • Ying Wu
    • 1
  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of AerospaceXi’an Jiaotong UniversityXi’anChina
  2. 2.Center for Computational Systems BiologyFudan UniversityShanghaiChina

Personalised recommendations