Skip to main content
Log in

Geometric approach to dynamics obtained by deformation of Lagrangians

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The relationship of equations of motion of a Lagrangian \(\phi (L)\) to those of L is studied, and the question of the existence of a function \(\phi \) such that \(\phi (L)\) is dynamically equivalent to L is answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, 2nd edn. Benjamin, Reading MA (1978)

    MATH  Google Scholar 

  2. Crampin, M.: On the differential geometry of the Euler–Lagrange equations and the inverse problem in Lagrangian dynamics. J. Phys. A Math. Gen. 14, 2567–2575 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Crampin, M.: Tangent bundle geometry for Lagrangian dynamics. J. Phys. A Math. Gen. 16, 3755–3772 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Crampin, M., Pirani, F.A.E.: Applicable Differential Geometry. University Press, Cambridge (1986)

    MATH  Google Scholar 

  5. Cariñena, J.F., Ibort, A., Marmo, G., Morandi, G.: Geometry from Dynamics, Classical and Quantum. Springer, Berlin (2015). ISBN 978-94-017-9219-6

    Book  MATH  Google Scholar 

  6. Biedenharn, L.C.: The quantum group \(SU_q(2) \) and a \(q\)-analogue of the boson operators. J. Phys. A Math. Gen. 22, L873–L878 (1989)

  7. Macfarlane, A.J.: On \(q\)-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J. Phys. A Math. Gen. 22, 4581–4588 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: \(f\)-oscillators and nonlinear coherent states. Phys. Scr. 55, 528–541 (1997)

    Article  Google Scholar 

  9. D’Avanzo, A., Marmo, G.: Reduction and unfolding: the Kepler problem. Int. J. Geom. Methods Mod. Phys. 2, 83–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Avanzo, A., Marmo, G., Valentino, A.: Reduction and unfolding for quantum systems: the hydrogen atom. Int. J. Geom. Methods Mod. Phys. 2, 1043–1062 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Marle, C.M.: A property of conformally Hamiltonian vector fields: application to the Kepler problem. J. Geom. Mech. 4, 181–206 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helmholtz, H.: Über die physikalische bedeutung des princips der kleinsten wirking. J. Reine Angew. Math. 100, 137–166 (1887)

    MathSciNet  MATH  Google Scholar 

  13. Douglas, J.: Solution of the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 50, 71–128 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  14. Currie, D.G., Saletan, E.J.: \(q\)-equivalent particle Hamiltonians. The classical one-dimensional case. J. Math. Phys. 7, 967–974 (1966)

    Article  MathSciNet  Google Scholar 

  15. Hojman, S., Harleston, H.: Equivalent Lagrangians: multidimensional case. J. Math. Phys. 22, 1414–1419 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cariñena, J.F., Ibort, L.A.: Non-Noether constants of motion. J. Phys. A Math. Gen. 16, 1–7 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cariñena, J.F., Rañada, M.F., Santander, M.: Lagrangian formalism for nonlinear second-order Riccati systems: one-dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)

  18. Cariñena, J.F., Guha P, P., Rañada, M.F.: Higher-order Abel equations: Lagrangian formalism, first integrals and Darboux polynomials. Nonlinearity 22, 2953–2969 (2009)

  19. Musielak, Z.E.: Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients. J. Phys. A Math. Theor. 41, 055205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Musielak, Z.E., Roy, D., Swift, L.D.: Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients. Chaos Solitons Fractals 38, 894–902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Musielak, Z.E.: General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems. Chaos Solitons Fractals 42, 2645–2652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cieśliński, J.L., Nikiciuk, T.: A direct approach to the construction of standard and non-standard Lagrangians for dissipative-like dynamical systems with variable coefficients. J. Phys. A Math. Theor. 43, 175205 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saha, A., Talukdar, B.: On the non-standard Lagrangian equations. arXiv: 1301.2667

  24. Saha, A., Talukdar, B.: Inverse variational problem for non-standard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. El-Nabulsi, R.A.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79, 2055–2068 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. El-Nabulsi, R.A.: Non-linear dynamics with non-standard Lagrangians. Qual. Theory Dyn. Syst. 13, 273–291 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Indian J. Phys. 87, 465–470 (2013)

    Article  Google Scholar 

  28. El-Nabulsi, R.A.: Electrodynamics of relativistic particles through non-standard Lagrangian. J. At. Mol. Sci. 5, 268–278 (2014)

    MathSciNet  Google Scholar 

  29. El-Nabulsi, R.A.: A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian Formalism. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 84, 563–569 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. El-Nabulsi, R.A.: Non-standard power-law Lagrangians in classical and quantum dynamics. Appl. Math. Lett. 43, 120–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Cariñena, J.F., Gheorghiu, I., Martínez, E., Santos, P.: Conformal Killing vector fields and a virial theorem. J. Phys. A Math. Theor. 47, 465206 (18pp) (2014)

    Article  MATH  MathSciNet  Google Scholar 

  32. Saunders, D.J.: Homogeneous Lagrangian systems. Rep. Math. Phys. 51, 315–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fernández Núñez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariñena, J.F., Fernández Núñez, J. Geometric approach to dynamics obtained by deformation of Lagrangians. Nonlinear Dyn 83, 457–461 (2016). https://doi.org/10.1007/s11071-015-2340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2340-6

Keywords

Mathematics Subject Classification

Navigation