Skip to main content
Log in

Vector-based tuning and experimental validation of fractional-order PI/PD controllers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Although a considerable amount of research has been carried out in the field of fractional-order controllers, a simplified tuning routine has yet to be established. Most of the tuning techniques for fractional-order controllers deal with complex computations and optimization routines. This paper proposes a simple yet efficient methodology based on a vector representation of the fractional-order controllers. This simplifies considerably the computations and derivation of the fractional-order controller parameters. The tuning procedure is exemplified first for a fractional-order PI controller designed for a simple first-order process, as well as for a fractional-order PD controller for a servoing system. In this case, the experimental results are also included, showing that this novel tuning approach is a viable replacement for the more complex tuning procedures currently employed in the design of different fractional-order controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional-order systems and \(PI^{\lambda }D^{\mu }\)-controllers. IEEE Trans. Autom. Control 44, 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Monje, C.A., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional order Systems and Controls: Fundamentals and Applications. Springer, berlin (2010)

    Book  MATH  Google Scholar 

  3. Xue, D., Chen, Y., Atherton, D.P.: Linear Feedback Control Analysis and Design with MATLAB. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  4. Li, H.S., Luo, Y., Chen, Y.Q.: A fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. IEEE Trans. Control Syst. Technol. 18, 516–520 (2010)

    Article  Google Scholar 

  5. Kesarkar, A.A., Selvaganesan, N.: Tuning of optimal fractional-order PID controller using an artificial bee colony algorithm. Syst. Sci. Control Eng. 3, (2015). doi:10.1080/21642583.2014.987480

  6. Buanovi, L.J., Lazarevi, M.P., Batalov, S.N.: Fractional PID controllers tuned by genetic algorithms for expansion turbine in the cryogenic air separation process. Hemijskaindustrija 68(5), 519–528 (2014)

    Google Scholar 

  7. Cao, J.Y., Cao, B.G.: Design of fractional order controllers based on particle swarm optimization. Int. J. Control Autom. Syst. 4(6), 775–781 (2006)

    Google Scholar 

  8. Roy, G.G., Chakraborty, P., Das, S.: Designing fractional-order \(PI\lambda D\mu \) controller using differential harmony search algorithm. Int. J. Bio-Inspired Comput. 2(5), 303–309 (2010)

    Article  Google Scholar 

  9. Tavazoei, M.S.: Time response analysis of fractional order control systems: a survey on recent results. Fract. Calc. Appl. Anal. 17, 440–461 (2014)

  10. Ionescu, C., Machado, J.T., De Keyser, R.: Fractional-order impulse response of the respiratory system. Comput. Math. Appl. 62, 845–854 (2011)

    Article  MATH  Google Scholar 

  11. Copot, C., Burlacu, A., Ionescu, C.M., Lazar, C., De Keyser, R.: A fractional order control strategy for visual servoing systems. Mechatronics 23, 848–855 (2013)

    Article  Google Scholar 

  12. Muresan, C.I., Folea, S., Mois, G., Dulf, E.H.: Development and implementation of an FPGA based fractional order controller for a DC motor. Mechatronics 23, 798–804 (2013)

    Article  Google Scholar 

  13. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16, 798–812 (2008)

    Article  Google Scholar 

  14. Valerio, D., Costa, J.S.D.: Tuning-rules for fractional PID controllers. In: Preprints IFAC workshop on fractional differentiation and its applications, pp. 28–33. International Federation of Automatic Control (2006). doi:10.3182/20060719-3-PT-4902.00004

  15. Valerio, D., Costa, J.S.D.: Tuning of fractional PID controllers with Ziegler–Nichols-type rules. Signal Process. 86, 2771–2784 (2006)

    Article  MATH  Google Scholar 

  16. Merrikh-Bayat, F.: General rules for optimal tuning the \(PI^{\lambda }D^{\mu }\) controllers with application to first-order plus time delay processes. Can. J. Chem. Eng. 90(6), 1400–1410 (2012)

    Article  Google Scholar 

  17. Chen, Y.Q., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. ASME J. Comput. Nonlinear Dyn. 3, 0214031–0214037 (2008)

    Article  Google Scholar 

  18. Gude, J.J., Kahoraho, E.: New tuning rules for PI and fractional PI controllers. In: Proceedings European Control Conference, Budapest (HU) (2009)

  19. Wang, C., Cai, N., Wang, L., Jiang, W.: Tuning fractional order proportional integral controllers based on vector in the complex plane for first order systems. In: The 33th IEEE Chinese Control and Decision Conference, pp. 49–54 (2014). doi:10.1109/CCDC.2014.6852116

  20. Cai, N., Wang, C.: Tuning fractional order proportional differential controllers based on vector in the complex plane for second order systems. In: The 33th IEEE Chinese Control and Decision Conference, pp. 4163–4168 (2014). doi:10.1109/ChiCC.2014.6895636

  21. Inteco, Modular Servo System-User’s Manual, (2008). www.inteco.com.pl

  22. Antić, D., Milojković, M., Jovanović, Z., Nikolić, S.: Optimal design of the fuzzy sliding mode control for a DC servo drive. J. Mech. Eng. 56, 455–463 (2010)

    Google Scholar 

  23. Barbosa, R., Machado, J.A.T., Jesus, I.S.: Effect of fractional orders in the velocity control of a servo system. Comput. Math. Appl. 59, 1679–1686 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tepljakov, A., Petlenkov, E., Belikov, J., Astapov, S.: Tuning and digital implementation of a fractional-order PD controller for a position servo. Int. J. Microelectron. Comput. Sci. 4, 116–123 (2013)

    Google Scholar 

  25. Oustaloup, A., Sabatier, J., Lanusse, P.: From fractal robustness to the CRONE control. Fract. Calc. Appl. Anal. 2, 1–30 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex non integer differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I: Fund. theory Appl. 47, 25–39 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNDI– UEFISCDI, Project Number PN-II-RU-TE-2012-3-0307, Contract No. 59.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva H. Dulf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muresan, C.I., Dulf, E.H. & Both, R. Vector-based tuning and experimental validation of fractional-order PI/PD controllers. Nonlinear Dyn 84, 179–188 (2016). https://doi.org/10.1007/s11071-015-2328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2328-2

Keywords

Navigation