Skip to main content
Log in

Dynamics and trajectory tracking control of cooperative multiple mobile cranes

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the dynamics and trajectory tracking control of cooperative multiple mobile cranes. Compared with a single mobile crane, cooperative cable parallel manipulators for multiple mobile cranes (CPMMC) are more complex in configuration, which have the characters of both series and parallel manipulators. Therefore, for the CPMMC, the forward as well as the inverse kinematics and dynamics include the difficulties of both series and parallel manipulators. However, the closed kinematic chain brings about potential benefits, including sufficient accuracy, higher cost performance, better lifting capacity and security. Firstly, the forward and inverse kinematics of the CPMMC with point mass are derived with elimination method, and the complete dynamic model of the CPMMC is established based on Lagrange equation and the complete kinematics. Secondly, considering the repetitive tasks and high security and precision requirement, a robust iterative learning controller is designed for trajectory tracking on the basis of the linearization of the dynamics. Thirdly, taking the engineering practice into consideration, two case studies are simulated with the same expected trajectory but with different weights of the loads. Finally, the designed controller is compared with traditional PD control algorithm via numerical simulation. The results demonstrate the feasibility and superiority of the CPMMC and designed controller, and provide a theoretical basis for the cooperation of multiple mobile cranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(L_{i}\) :

The length of boom

f :

The horizontal distance between lower pivot point of boom and the slewing axis

s :

The horizontal distance between lower pivot point of cylinder and the slewing center

h :

The vertical distance between lower pivot point of cylinder and the slewing center

\(l_{si}\) :

The distance between upper pivot point of cylinder and lower pivot point of boom

\({{\phi _i}}\) :

The slewing angle

\(l_{i}\) :

The length of cable

\(l_{ci}\) :

The length of hydraulic cylinder

q :

Generalized coordinates of the CPMMC

D :

The distance between the slewing centers of each two cranes

d :

The distance between the top point of boom and hoisting point of load

m :

The mass of the load

\(K_{m}\) :

The kinetic energy of the load

\(P_{m}\) :

The gravitational potential energy of the load

\({\varvec{\tau }_m} \) :

The general force on the actuators with respect to the payload

\(M_{m}\) :

Inertia matrix with respect to the payload

\(C_{m}\) :

Coriolis matrix with respect to the payload

\({{\theta _i}} \) :

The angle of the boom around the corresponding down pivot

\(K_{L}\) :

The kinetic energy of the boom

\(\bar{{J}}_{{Li}} \) :

The rotary inertia of the boom around the corresponding lower pivot

\(\tilde{{J}}_{{Li}}\) :

The rotary inertia of the boom around the corresponding slewing center

\(m_{L}\) :

The mass of the boom

\(P_{L}\) :

The gravitational potential energy of the boom

\(K_{L}\) :

The kinetic energy of the boom

\({\varvec{\tau }}_L \) :

The general force on the actuators with respect to the boom

\(M_{L}\) :

Inertia matrix with respect to the boom

\(C_{L}\) :

Coriolis matrix with respect to the boom

\(J_{r}\) :

The rotary inertia of the turrets around the corresponding slewing center

\(P_{r}\) :

The gravitational potential energy of the turret

\(K_{r}\) :

The kinetic energy of the turret

\(\varvec{\tau }_r\) :

The general force on the actuators with respect to the turret

\(M_{r}\) :

Inertia matrix with respect to the turret

\(C_{r}\) :

Coriolis matrix with respect to the turret

\({\varvec{\tau }} \) :

The general force on the actuators of the CPMMC

M :

Inertia matrix of the CPMMC

C :

Coriolis matrix of the CPMMC

j :

The iteration times

\({\varvec{\tau }}_a^{j}\, ({{t}})\) :

The unknown disturbance

\({\varvec{\tau }}^{j}\,({{t}})\) :

The input torque

\({\varvec{e}}\) :

The positional tracking error matrix of the actuators

\({\varvec{K}}_p^j \) :

The proportional gain

\({\varvec{K}}_d^j \) :

The differential gain

\(\beta (j)\) :

The regulatory factor of the control gains which acts in the j-th iteration

E :

The robust gain

\({\varvec{K}}_p^j \) :

The proportional gain of the j-th iteration

\({\varvec{K}}_d^j \) :

The differential gain of the j-th iteration

\({\varvec{K}}_p^0 \) :

The initial proportional gain

\({\varvec{K}}_d^0 \) :

The initial differential gain

References

  1. Sun, N., Fang, Y.: Nonlinear tracking control of underactuated cranes with load transferring and lowering: theory and experimentation. Automatica 50(9), 2350–2357 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lee, L.H., Huang, P.H., Pan, S.T., Lie, H.W., Chiang, T.C., Chang, C.Y.: Applying vision feedback to crane controller design. Int. J. Syst. Sci. 46(2), 294–302 (2015)

    Article  Google Scholar 

  3. Boschetti, G., Caracciolo, R., Richiedei, D., Trevisani, A.: A non-time based controller for load swing damping and path-tracking in robotic cranes. J. Intell. Robot. Syst. 76(2), 201–217 (2014)

    Article  Google Scholar 

  4. Schaper, U., Dittrich, C., Arnold, E., Schneider, K., Sawodny, O.: 2-DOF skew control of boom cranes including state estimation and reference trajectory generation. Control. Eng. Pract. 33, 63–75 (2014)

    Article  Google Scholar 

  5. Kuo, T.Y.T., Kang, S.C.J.: Control of fast crane operation. Automat. Constr. 42, 25–35 (2014)

    Article  Google Scholar 

  6. Tomczyk, J., Cink, J., Kosucki, A.: Dynamics of an overhead crane under a wind disturbance condition. Automat. Constr. 42, 100–111 (2014)

    Article  Google Scholar 

  7. Sun, N., Fang, Y., Chen, H.: A new antiswing control method for underactuated cranes with unmodeled uncertainties: theoretical design and hardware experiments. IEEE. Trans. Ind. Electron. 62(1), 453–465 (2015)

    Article  MathSciNet  Google Scholar 

  8. Zi, B., Qian, S., Ding, H.F., Kecskemethy, A.: Design and analysis of cooperative cable parallel manipulators for multiple mobile cranes. Int. J. Adv. Robot. Syst. 9, 1–10 (2012)

    Google Scholar 

  9. Zi, B., Duan, B.Y., Du, J.L., Bao, H.: Dynamic modeling and active control of a cable-suspended parallel robot. Mechatronics 18(1), 1–12 (2008)

    Article  Google Scholar 

  10. Korayem, M.H., Bamdad, M., Tourajizadeh, H., Shafiee, H., Zehtab, R.M., Iranpour, A.: Development of ICASBOT: a cable-suspended robot’s with six DOFs. Arab. J. Sci. Eng. 38(5), 1131–1149 (2013)

    Article  Google Scholar 

  11. Khosravi, M.A., Taghirad, H.D.: Robust PID control of fully-constrained cable driven parallel robots. Mechatronics 24(2), 87–97 (2014)

    Article  Google Scholar 

  12. Tang, X.Q., Chai, X.M., Tang, L.W., Shao, Z.F.: Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST. Robot. Comput. Integr. Manuf. 30(5), 565–575 (2014)

    Article  Google Scholar 

  13. Korayem, M., Tourajizadeh, H., Zehfroosh, A., Korayem, A.: Optimal path planning of a cable-suspended robot with moving boundary using optimal feedback linearization approach. Nonlinear Dyn. 78(2), 1515–1543 (2014)

    Article  MathSciNet  Google Scholar 

  14. Korayem, M., Zehfroosh, A., Tourajizadeh, H., Manteghi, S.: Optimal motion planning of non-linear dynamic systems in the presence of obstacles and moving boundaries using SDRE: application on cable-suspended robot. Nonlinear Dyn. 76(2), 1423–1441 (2014)

    Article  MATH  Google Scholar 

  15. Kino, H., Yahiro, T., Takemura, F., Morizono, T.: Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots: Translational systems using the minimum number of wires under zero-gravity condition. IEEE. Trans. Robot. 23(4), 803–812 (2007)

    Article  Google Scholar 

  16. Capua, A., Shapiro, A., Shoval, S.: SpiderBot: a cable-suspended walking robot. Mech. Mach. Theory. 82, 56–70 (2014)

    Article  Google Scholar 

  17. Carricato, M., Merlet, J.-P.: Stability analysis of underconstrained cable-driven parallel robots. IEEE. Trans. Robot. 29(1), 288–296 (2013)

    Article  Google Scholar 

  18. Eberharter, J.K., Schneider, K.: Control for synchronizing multi-crane lifts. In: 2010 IEEE International Conference on Control Applications, pp. 1301–1306 (2010)

  19. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robots 30, 73–86 (2011)

    Article  Google Scholar 

  20. Jiang, Q.M., Kumar, V.: The inverse kinematics of cooperative transport with multiple aerial robots. IEEE Trans. Robot. 29(1), 136–145 (2013)

    Article  Google Scholar 

  21. Ku, N., Ha, S.: Dynamic response analysis of heavy load lifting operation in shipyard using multi-cranes. Ocean. Eng. 83, 63–75 (2014)

    Article  Google Scholar 

  22. Hu, B.: Complete kinematics of a serial-parallel manipulator formed by two tricept parallel manipulators connected in serials. Nonlinear Dyn. 78(4), 2685–2698 (2014)

    Article  Google Scholar 

  23. Zi, B., Lin, J., Qian, S.: Localization, obstacle avoidance planning and control of a cooperative cable parallel robot for multiple mobile cranes. Robot. Comput. Integr. Manuf. 34, 105–123 (2015)

    Article  Google Scholar 

  24. Qian, S., Zi, B., Zhang, D., Zhang, L.: Kinematics and error analysis of cooperative cable parallel manipulators for multiple mobile cranes. Int. J. Mech. Mater. Des. 10(4), 395–409 (2014)

    Article  Google Scholar 

  25. Liu, J.G., Li, Y.M., Zhang, Y., Gao, Q., Zuo, B.: Dynamics and control of a parallel mechanism for active vibration isolation in space station. Nonlinear Dyn. 76(3), 1737–1751 (2014)

  26. Wu, J., Chen, X.L., Wang, L.P., Liu, X.J.: Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor. Nonlinear Dyn. 78(1), 241–250 (2014)

    Article  Google Scholar 

  27. Staicu, S., Liu, X.J., Li, J.F.: Explicit dynamics equations of the constrained robotic systems. Nonlinear Dyn. 58(1–2), 217–235 (2009)

    Article  MATH  Google Scholar 

  28. Parra-Vega, V., Sanchez, A., Izaguirre, C., Garcia, O., Ruiz-Sanchez, F.: Toward aerial grasping and manipulation with multiple UAVs. J. Intell. Robot. Syst. 70(1–4), 575–593 (2013)

    Article  Google Scholar 

  29. Zi, B., Cao, J.B., Qian, S.: Iterative learning tracking control of a hybrid-driven based three-cable parallel manipulator. Adv. Mech. Eng. 2014, 1–15 (2014)

    Google Scholar 

  30. Leban, F.A., Diaz-Gonzalez, J., Parker, G.G., Zhao, W.: Inverse kinematic control of a dual crane system experiencing base motion. IEEE Trans. Contr. Syst Technol. 23(1), 331–339 (2015)

    Article  Google Scholar 

  31. Li, Z., Li, J., Kang, Y.: Adaptive robust coordinated control of multiple mobile manipulators interacting with rigid environments. Automatica 46(12), 2028–2034 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, H.Z., Li, L., Lin, H., Kang, M.X., Song, J., Yu, L.Y., Wu, C.: PID plus fuzzy logic method for torque control in traction control system. Int. J. Automot. Technol. 13(3), 441–450 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51275515) and the Fundamental Research Funds for the Central Universities (2014HGCH0015). The authors appreciate the comments and valuable suggestions of anonymous referees and editors for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Zi, B. & Ding, H. Dynamics and trajectory tracking control of cooperative multiple mobile cranes. Nonlinear Dyn 83, 89–108 (2016). https://doi.org/10.1007/s11071-015-2313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2313-9

Keywords

Navigation