Skip to main content
Log in

Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Within the context of the Madelung fluid description, investigation has been carried out on the connection between the envelope soliton-like solutions of a wide family of nonlinear Schrödinger equations and the soliton-like solutions of a wide family of Korteweg–de Vries or Korteweg–de Vries-type equations. Under suitable hypothesis for the current velocity, the Gerdjikov–Ivanov envelope solitons are derived and discussed in this paper. For a motion with the stationary profile current velocity, the fluid density satisfies a generalized stationary Gardner equation, which possesses bright- and dark-type (including gray and black) solitary waves due to associated parametric constraints, and finally envelope solitons are found correspondingly for the Gerdjikov–Ivanov model. Moreover, this approach may be useful for studying other nonlinear Schrödinger-type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Broglie, L.: Une tentative d’Interpretation Causale et Non-lineáre de la Meccanique Ondulatoire. Gauthier-Villars, Paris (1956)

    Google Scholar 

  2. Bohm, D.: A suggested interpretation of the quantum theory in terms of hidden variables. I. Phys. Rev. 85, 166 (1952)

    Article  MATH  Google Scholar 

  3. Madelung, E.: Quantum theory in hydrodynamical form. Z. Phys. 40, 332 (1926)

    Google Scholar 

  4. Korn, A.: Schrödingers Wllenmechanik und meine eigenen mechanischen Theorien. Berührungspunkte und Divergenzen. Zeitschrift für Physik 44, 745 (1927)

    Article  MATH  Google Scholar 

  5. Auletta, G.: Foundation and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  6. Fedele, R., Anderson, D., Lisak, M.: How the coherent instabilities of an intense high-energy charged-particle beam in the presence of nonlocal effects can be explained within the context of the Madelung fluid description. Eur. Phys. J. B 49, 275 (2006)

    Article  Google Scholar 

  7. Shukla, P.K., Fedele, R., Onorato, M., Tsintsadze, N.L.: Envelope solitons induced by high-order effects of light-plasma interaction. Eur. Phys. J. B 29, 613 (2002)

    Article  Google Scholar 

  8. Michelle, S., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Zhou, Q., Biswas, A.: Optical solitons in DWDM system with four-wave mixing. Optoelectron. Adv. Mater. 9, 14 (2015)

    Google Scholar 

  9. Guzman, J.V., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion by Ansata approach. J. Optoelectron. Adv. Mater. 17, 165 (2015)

  10. Guzman, J.V., Zhou, Q., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Biswas, A.: Optical solitons in cascaded system with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 17, 74 (2015)

    Google Scholar 

  11. Guzman, J.V., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Thirring optical solitons with spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 16, 41 (2015)

    Google Scholar 

  12. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in magneto-optic waveguides with spatio-temporal dispersion. Frequenz 68, 445 (2014)

  13. Guzman, J.V., Alshaery, A.A., Hilal, E.M., Bhrawy, A.H., Mahmood, M.F., Moraru, L., Biswas, A.: Optical soliton perturbation in magneto-optic waveguides with spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 68, 1063 (2014)

    Google Scholar 

  14. Alshaery, A.A., Hilal, E.M., Banaja, M.A., Alkhateeb, S.A., Moraru, L., Biswas, A.: Optical soliton in multiple-core couplers. J. Optoelectron. Adv. Mater. 16, 750 (2014)

    Google Scholar 

  15. Fedele, R., Schamel, H.: Solitary waves in the Madelung’s fluid: connection between the nonlinear Schrödinger equation and the Korteweg–de Vries equation. Eur. Phys. J. B 27, 313 (2002)

    Article  Google Scholar 

  16. Fedele, R.: Envelope solitons versus solitons. Phys. Scr. 65, 502 (2002)

    Article  MATH  Google Scholar 

  17. Fedele, R., Schamel, H., Karpman, V.I., Shukla, P.K.: Envelope solitons of nonlinear Schrödinger equation with an anti-cubic nonlinearity. J. Phys. A 36, 1169 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fedele, R., Schamel, H., Shukla, P.K.: Solitons in the Madelung’s fluid. Phys. Scr. T98, 18 (2002)

    Article  Google Scholar 

  19. Grecu, D., Grecu, A.T., Visinescu, A., Fedele, R., de Nicola, S.: Solitary waves in a Madelung fluid description of derivative NLS equations. J. Non-Linear Math. Phys. 15, 209 (2008)

    Article  Google Scholar 

  20. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81, 239 (2015)

    Article  Google Scholar 

  21. Wang, D.S., Yin, S., Tian, Y., Liu, Y.F.: Integrability and bright Soliton solutions to the coupled nonlinear Schrodinger equation with higher-order effects. Appl. Math. Comput. 229, 296 (2014)

    Article  MathSciNet  Google Scholar 

  22. Wang, D.S., Ma, Y.Q., Li, X.G.: Prolongation structures and matterwave Solitons in F1 spinor Bose–Einstein condensate. Commun. Nonlinear Sci. Numer. Simulat. 19, 3556 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, L., Geng, C., Zhang, L.L., Zhao, Y.C.: Characteristics of the nonautonomous breathers and rogue waves in a generalized Lenells–Fokas equation. Europhys. Lett. 108, 50009 (2014)

    Article  Google Scholar 

  24. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701 (2013)

    Article  MathSciNet  Google Scholar 

  25. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Moraru, L., Biswas, A.: Optical solitons in bireeringent fibers with four-wave mixing for parabolic law nonlinearity. Optoelectron. Adv. Mater. 9, 10 (2015)

  26. Mirzazadeh, M., Eslami, M., Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Biswas, A.: Optical solitons in DWDM system spatio-temporal dispersion. J. Nonlinear Opt. Phys. Mater. 24, 1550006 (2015)

    Article  Google Scholar 

  27. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Milovic, D., Moraru, L., Savescu, M., Biswas, A.: Optical solitons with polynomial and triple power law nonlinearities and spatio-temporal dispersion. Proc. Rom. Acad. Ser. A 15, 235 (2014)

    MathSciNet  Google Scholar 

  28. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433 (2014)

    Google Scholar 

  29. Savescu, M., Bhrawy, A.H., Hilal, E.M., Alshaery, A.A., Biswas, A.: Optical solitons in bireeringent fibers with four-wave mixing for Kerr law nonlinearity. Rom. J. Phys. 59, 582 (2014)

    Google Scholar 

  30. Savescu, M., Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Khan, K.R., Mahmood, M.F., Biswas, A.: Optical solitons in directional couplers with spatio-temporal dispersion. J. Mod. Opt. 61, 442 (2014)

    Article  MathSciNet  Google Scholar 

  31. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Manrakhan, W., Savescu, M., Biswas, A.: Dispersive optical solitons with Schrödinger–Hirota equation. J. Nonlinear Opt. Phys. Mater. 23, 1450014 (2014)

    Article  Google Scholar 

  32. Savescu, M., Hilal, E.M., Alshaery, A.A., Bhrawy, A.H., Moraru, L., Biswas, A.: Optical solitons with quadratic nonlinearity and spatio-temporal dispersion. J. Optoelectron. Adv. Mater. 16, 619 (2014)

    Google Scholar 

  33. Alshaery, A.A., Bhrawy, A.H., Hilal, E.M., Biswas, A.: Bright and singular solitons in quadratic nonlinear media. J. Electromagn. Waves Appl. 28, 275 (2014)

    Article  Google Scholar 

  34. Bhrawy, A.H., Alshaery, A.A., Hilal, E.M., Savescu, M., Milovic, D., Khan, K.R., Mahmood, M.F., Jovanoski, Z., Biswas, A.: Optical solitons in birefringent fibers with spatio-temporal dispersion. Optik 125, 4935 (2014)

    Article  Google Scholar 

  35. Gerdjikov, V.S., Ivanov, M.I.: The quadratic bundle of general form and the nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130 (1983)

    MathSciNet  Google Scholar 

  36. Kundu, A.: Exact solutions to higher-order nonlinear equations through gauge transformation. Phys. D 25, 399 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fan, E.G.: Darboux transformation and soliton-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A 33, 6925 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fan, E.G.: Integrable evolution systems based on Gerdjikov–Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys. 41, 7769 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Article  Google Scholar 

  40. Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Controllable Akhmediev breather and Kuznetsov–Ma soliton trains in PT-symmetric coupled waveguides. Opt. Express 22, 29862 (2014)

  41. Lü, X.: New bilinear Bäcklund transformation with multisoliton solutions for the \((2+1)\)-dimensional Sawada–Kotera mode. Nonlinear Dyn. 76, 161 (2014)

    Article  Google Scholar 

  42. Lü, X., Li, J.: Integrability with symbolic computation on the Bogoyavlensky–Konoplechenko model: Bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dyn. 77, 2135 (2014)

  43. Ma, W.X., Zhou, R.G.: A coupled AKNS-Kaup–Newell soliton hierarchy. J. Math. Phys. 40, 4419 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61308018, by China Postdoctoral Science Foundation under Grant No. 2014T70031, by the Fundamental Research Funds for the Central Universities of China (2014RC019 and 2015JBM111). WXM is supported in part by the National Natural Science Foundation of China under Grant Nos. 11271008 and 11371326, Natural Science Foundation of Shanghai under Grant No. 11ZR1414100, Zhejiang Innovation Project of China under Grant No. T200905, the First-class Discipline of Universities in Shanghai and the Shanghai University Leading Academic Discipline Project (No. A13-0101-12-004) and Shanghai University of Electric Power.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Ma, WX., Yu, J. et al. Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model. Nonlinear Dyn 82, 1211–1220 (2015). https://doi.org/10.1007/s11071-015-2227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2227-6

Keywords

Mathematics Subject Classification

Navigation