Skip to main content
Log in

A new topological indicator for chaos in mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The main goal in this paper was to provide a novel chaos indicator based on a topological model which allows to calculate the fractal dimension of any curve. A fractal structure is a topological tool whose recursiveness becomes ideal to generalize the concept of fractal dimension. In this paper, we provide an algorithm to calculate a new fractal dimension specially designed for a parametrization of a curve or a random process, whose definition is made by means of fractal structures. As an application, we explore the use of this new concept of fractal dimension as a chaos indicator for dynamical systems, in a similar way to the classical maximal Lyapunov exponent. To illustrate it, we apply the new fractal dimension as an indicator to model the chaotic behavior of a satellite which is moving around a planet whose gravity field is approximated by the field of a point mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Arenas, F.G., Sánchez-Granero, M.A.: A characterization of non-archimedeanly quasimetrizable spaces. Rend. Istit. Mat. Univ. Trieste Suppl XXX, 21–30 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Beletsky, V.V.: Motion of an Artificial Satellite About a Center of Mass. Israel Program for Scientific Translations, Jerusalem (1966)

    Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them; part 1: theory. Meccanica 15(1), 9–20 (1980)

    Article  MATH  Google Scholar 

  4. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 2: numerical application. Meccanica 15(1), 21–30 (1980)

    Article  MATH  Google Scholar 

  5. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Chichester (1990)

    MATH  Google Scholar 

  6. Feder, J.: Fractals. Plenum Press, New York (1988)

    Book  MATH  Google Scholar 

  7. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach. Topol. Appl. 159(7), 1825–1837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures. Topol. Appl. 163, 93–111 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fernández-Martínez, M., Sánchez-Granero, M.A.: Fractal dimension for fractal structures: a Hausdorff approach revisited. J. Math. Anal. Appl. 409(1), 321–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández-Martínez, M., Sánchez-Granero, M.A.: Trinidad Segovia, J.E.: Fractal dimension for fractal structures: applications to the domain of words. Appl. Math. Comput. 219(3), 1193–1199 (2012)

  11. Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E.: Fractal dimensions for fractal structures and their applications to financial markets, Aracne editrice S.r.l., Roma (2013)

  12. Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E.: Román-Sánchez, I.M.: An accurate algorithm to calculate the Hurst exponent of self-similar processes. Phys. Lett. A 378(32–33), 2355–2362 (2014)

  13. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Iverson, K.E.: A Programming Language. Wiley, New York (1962)

    Book  MATH  Google Scholar 

  15. Jeanblanc, M., Yor, M., Chesney, M.: Mathematical Methods for Financial Markets. Springer Finance, London (2009)

    Book  MATH  Google Scholar 

  16. Lamperti, J.W.: Semi-stable stochastic processes. Trans. Am. Math. Soc. 104, 62–78 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mandelbrot, B.B.: Fractals: Form, Chance and Dimension. W.H. Freeman & Company, San Francisco (1977)

    MATH  Google Scholar 

  18. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman & Company, New York (1982)

    MATH  Google Scholar 

  19. Mandelbrot, B.B.: Gaussian Self-Affinity and Fractals. Springer, New York (2002)

    Google Scholar 

  20. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics and Chaos. CRC Press Inc., Boca Raton (1995)

    MATH  Google Scholar 

  21. Samorodnitsky, G., Taqqu, M.S.: Stable Non-gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  22. Sánchez-Granero, M.A.: Fractal structures, in: asymmetric topology and its applications. In: Quaderni di Matematica, vol. 26, Aracne, pp. 211–245 (2012)

  23. Sánchez-Granero, M.A., Fernández-Martínez, M., Trinidad Segovia, J.E.: Introducing fractal dimension algorithms to calculate the Hurst exponent of financial time series. Eur. Phys. J. B 85(3), 1–13 (2012)

  24. Tijera, M., Maqueda, G., Cano, J.L., Yagüe, C.: Analysis offractal dimension of the wind speed and its relationships withturbulent and stability parameters, chapter 2 of [Sid-Ali Ouadfeul(ed.), Fractal Analysis and Chaos in Geosciences], Intech (2012)

  25. Trinidad Segovia, J.E., Fernández-Martánez, M., Sánchez-Granero, M.A.: A note on geometric method-based procedures to calculate the Hurst exponent. Phys. A 391(6),2209–2214 (2012)

  26. Zotos, E.E.: The Fast Norm Vector Indicator (FNVI) method: a new dynamical parameter for detecting order and chaos in Hamiltonian systems. Nonlinear Dyn. 70, 951–978 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

M. Fernández-Martínez especially acknowledges the valuable support provided by Centro Universitario de la Defensa en la Academia General del Aire de San Javier (Murcia, Spain). M.A. Sánchez-Granero acknowledges the support of the Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01. J. E. Trinidad Segovia appreciates the support of Junta de Andalucía, Grant P09-SEJ-5404. J.A. Vera-López acknowledges the support of MICINN/FEDER, Grant No. MTM2011-22587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Vera-López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Martínez, M., Sánchez-Granero, M.A., Trinidad Segovia, J.E. et al. A new topological indicator for chaos in mechanical systems. Nonlinear Dyn 84, 51–63 (2016). https://doi.org/10.1007/s11071-015-2207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2207-x

Keywords

Navigation