Skip to main content
Log in

Soliton and Riemann theta function quasi-periodic wave solutions for a \((2+1)\)-dimensional generalized shallow water wave equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a \((2 + 1)\)-dimensional generalized shallow water wave equation is investigated through bilinear Hirota method. Interestingly, the breather-type and lump-type soliton solutions are obtained. Furthermore, dynamic properties of the soliton waves are revealed by means of the asymptotic analysis. Based on Hirota bilinear method and Riemann theta function, we succeed in constructing quasi-periodic wave solutions with a generalized form. We also display the asymptotic properties of these quasi-periodic wave solutions and point out the relation between the quasi-periodic wave solutions and the soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  2. Hirota, R.: Solitons. Springer, Berlin (1980)

    Google Scholar 

  3. Hietarinta, J.: Partially Integrable Evolution Equations in Physics. Kluwer, Dordrecht (1990)

    Google Scholar 

  4. Clarkson, P.A., Mansfield, E.L.: On a shallow water wave equation. Nonlinearity 7, 975–1000 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Exact travelling wave solutions for the generalized shallow water wave equation. Chaos Solitons Fractals 17, 121–126 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Inc, M., Ergut, M.: Periodic wave solutions for the generalized shallow water wave equation by the improved Jacobi elliptic function method. Appl. Math. E-Notes 5, 89–96 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Wazwaz, A.M.: Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method, tanh-coth method and Exp-function method. Appl. Math. Comput. 202, 275–286 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borhanifar, A., Zamiri, A., Kabir, M.M.: Exact traveling wave solution for the generalized shallow water wave (GSWW) equation. Middle East J. Sci. Res. 10, 310–315 (2011)

    Google Scholar 

  9. Jiang, Y., Tian, B., Li, M., Wang, P.: Bilinearization and soliton solutions for some nonlinear evolution equations in fluids via the Bell polynomials and auxiliary functions. Phys. Scr. 88, 025004 (2013)

    Article  Google Scholar 

  10. Wen, X.Y.: Extended Jacobi elliptic function expansion solutions of variant Boussinesq equations. Appl. Math. Comput. 217, 2808–2820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong, B.J., Lu, D.C.: New Jacobi elliptic function-like solutions for the general KdV equation with variable coefficients. Math. Comput. Model. 55, 1594–1600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Cnoidal and snoidal wave solutions to coupled nonlinear wave equations by the extended Jacobis elliptic function method. Commun. Nonlinear Sci. Numer. Simulat. 18, 915–925 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhrawy, A.H., Abdelkawy, M.A., Hilal, E.M., Alshaery, A.A., Biswas, A.: Solitons, cnoidal waves, snoidal waves and other solutions to Whitham–Broer–Kaup system. Appl. Math. inf. sci. 8, 2119–2128 (2014)

    Article  MathSciNet  Google Scholar 

  14. Constantin, A., Ivanov, R.I., Lenells, J.: Inverse scattering transform for the Degasperis–Procesi equation. Nonlinearity 23, 2559–2575 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ablowitz, M.J., Segur, H.: Solitons, nonlinear evolution equations and inverse scattering. J. Fluid Mech. 244, 721–725 (1992)

    Article  Google Scholar 

  16. Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scr. 82, 065003 (2010)

    Article  Google Scholar 

  17. Ma, W.X., Zhu, Z.N.: Solving the \((3+1)\)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871–11879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhrawy, A.H., Abdelkawy, M.A., Kumar, S., Biswas, A.: Solitons and other solutions to Kadomtsev–Petviashvili equation of B-type. Rom. J. Phys. 58, 729–748 (2013)

    MathSciNet  Google Scholar 

  19. Hirota, R.: Exact solutions of the Korteweg–de Vries equation for multiple collisions of solitons. J. Phys. Soc. Jpn. 33, 1456–1458 (1972)

    Article  Google Scholar 

  20. Lü, X., Tian, B., Zhang, H.Q., Li, H.: Generalized \((2+1)\)-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms. Nonlinear Dyn. 67, 2279–2290 (2012)

    Article  MATH  Google Scholar 

  21. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simulat. 43, 13–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wazwaz, A.M., Triki, H.: Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients. Commun. Nonlinear Sci. Numer. Simul. 16, 1122–1126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.M.: \((2+1)\)-Dimensional Burgers equations BE \((\text{ m }+\text{ n }+1)\): using the recursion operator. Appl. Math. Comput. 219, 9057–9068 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wazwaz, A.M.: Kink solutions for three new fifth order nonlinear equations. Appl. Math. Model. 38, 110–118 (2014)

    Article  MathSciNet  Google Scholar 

  25. Wazwaz, A.M.: A study on a \((2+1)\)-dimensional and a \((3+1)\)-dimensional generalized Burgers equation. Appl. Math. Lett. 31, 41–45 (2014)

    Article  MathSciNet  Google Scholar 

  26. Ebadi, G., Fard, N.Y., Bhrawy, A.H., Kumar, S., Triki, H., Yildirim, A., Biswas, A.: Solitons and other solutions to the \((2+1)\)-dimensional extended Kadomtsev–Petviashvili equation with power law nonlinearity. Rom. J. Phys. 65, 27–62 (2013)

    Google Scholar 

  27. Biswas, A., Bhrawy, A.H., Abdelkawy, M.A., Alshaery, A.A., Hilal, E.M.: Symbolic computation of some nonlinear fractional differential equations. Rom. J. Phys. 59, 433–442 (2014)

    Google Scholar 

  28. Shi, L.M., Zhang, L.F., Meng, H., Zhao, H.W., Zhou, S.P.: A method to construct Weierstrass elliptic function solution for nonlinear equations. Int. J. Mod. Phys. B 25, 1931–1939 (2011)

    Article  MathSciNet  Google Scholar 

  29. Guo, Y.X., Wang, Y.: On Weierstrass elliptic function solutions for a \((\text{ N }+1)\) dimensional potential KdV equation. Appl. Math. Comput. 217, 8080–8092 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ebaid, A., Aly, E.H.: Exact solutions for the transformed reduced Ostrovsky equation via the F-expansion method in terms of Weierstrass-elliptic and Jacobian-elliptic functions. Wave Motion 49, 296–308 (2012)

    Article  MathSciNet  Google Scholar 

  31. Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. J. Phys. Soc. Jpn. 47, 1701–1705 (1979)

    Article  Google Scholar 

  32. Nakamura, A.: A direct method of calculating periodic wave solutions to nonlinear evolution equations. II. Exact one-and two-periodic wave solution of the coupled bilinear equations. J. Phys. Soc. Jpn. 48, 1365–1370 (1980)

    Article  Google Scholar 

  33. Hon, Y.C., Fan, E.G., Qin, Z.: A kind of explicit quasi-periodic solution and its limit for the Toda lattice equation. Mod. Phys. Lett. B 22, 547–553 (2008)

    Article  MATH  Google Scholar 

  34. Fan, E.G., Hon, Y.C.: Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in \((2+1)\) dimensions. Phys. Rev. E 78, 036607–036619 (2008)

    Article  MathSciNet  Google Scholar 

  35. Fan, E.G., Chow, K.W.: On the periodic solutions for both nonlinear differential and difference equations: a unified approach. Phys. Lett. A 374, 3629–3634 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations. J. Math. Anal. Appl. 371, 585–608 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, S.F., Zhang, H.Q.: A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations. Commun. Nonlinear Sci. Numer. Simul. 16, 173–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tian, S.F., Zhang, H.Q.: Riemann theta functions periodic wave solutions and rational characteristics for the \((1+1)\)-dimensional and \((2+1)\)-dimensional Ito equation. Chaos Solitons Fractals 47, 27–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Boiti, M., Leon, J.P., Manna, M., Pempinelli, F.: On the spectral transform of a Korteweg–de Vries equation in two spatial dimensions. Inverse probl. 2, 271 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tian, B., Gao, Y.T.: Soliton-like solutions for a \((2+1)\)-dimensional generalization of the shallow water wave equations. Chaos Solitons Fractals 7, 1497–1499 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, Y.T., Tian, B.: Generalized tanh method with symbolic computation and generalized shallow water wave equation. Comput. Math. Appl. 33, 115–118 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lou, S.Y.: Generalized dromion solutions of the \((2+1)\)-dimensional KdV equation. J. Phys. A: Math. Gen. 28, 7227 (1995)

    Article  MATH  Google Scholar 

  43. Lou, S.Y.: Conformal invariance and integrable models. J. Phys. A: Math. Gen. 30, 4803 (1997)

    Article  MATH  Google Scholar 

  44. Lou, S.Y., Hu, X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lou, S.Y., Ruan, H.Y.: Revisitation of the localized excitations of the \((2+1)\)-dimensional KdV equation. J. Phys. A: Math. Gen. 34, 305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tang, X.Y., Lou, S.Y.: A variable separation approach to solve the integrable and nonintegrable models: coherent structures of the \((2+1)\)-dimensional KdV equation. Commun. Theor. Phys. 38, 1–8 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chen, Y., Wang, Q., Li, B.: A series of soliton-like and double-like periodic solutions of a \((2+1)\)-dimensional asymmetric Nizhnik–Novikov–Vesselov equation. Commun. Theor. Phys. 42, 655–660 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ma, S.H., Fang, J.P.: Multi dromion-solitoff and fractal excitations for \((2+1)\)-dimensional Boiti–Leon–Manna–Pempinelli system. Commun. Theor. Phys. 52, 641–645 (2009)

    Article  MATH  Google Scholar 

  49. Fan, E.G.: Quasi-periodic waves and an asymptotic property for the asymmetrical Nizhnik–Novikov–Veselov equation. J. Phys. A 42, 095206 (2009)

    Article  MathSciNet  Google Scholar 

  50. Luo, L.: Quasi-periodic waves and asymptotic property for Boiti–Leon–Manna–Pempinelli Equation. Commun. Theor. Phys. 54, 208–214 (2010)

    Article  MATH  Google Scholar 

  51. Luo, L.: New exact solutions and Bäcklund transformation for Boiti–Leon–Manna–Pempinelli equation. Phys. Lett. A 375, 1059–1063 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Darvishi, M.T., Najafi, M., Kavitha, L., Venkatesh, M.: Stair and step soliton solutions of the integrable \((2+1)\) and \((3+1)\)-dimensional Boiti–Leon–Manna–Pempinelli equations. Commun. Theor. Phys. 58, 785–794 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to Prof. Liming Ling for his enthusiastic guidance. The work was supported by the National Natural Science foundation of China (Nos. 11171115 and 11361069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Song, M. & Liu, Z. Soliton and Riemann theta function quasi-periodic wave solutions for a \((2+1)\)-dimensional generalized shallow water wave equation. Nonlinear Dyn 82, 333–347 (2015). https://doi.org/10.1007/s11071-015-2161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2161-7

Keywords

Mathematics Subject Classification

Navigation