Skip to main content
Log in

Multifractal cross-correlation analysis of traffic time series based on large deviation estimates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multiscale analysis of cross-correlation between traffic signals is a developing research area, which helps to better understand the characteristics of traffic systems. Multifractal analysis is a multiscale analysis and almost exclusively develops around the concept of Legendre singularity spectrum, but which is structurally blind to subtle features like non-concavity or nonscaling of the distributions in some degree. Large deviations theory overcomes these limitations, and recently, performing estimators were proposed to reliably compute the corresponding large deviations singularity spectrum. In this paper, we apply the large deviations spectrum based on detrend cross-correlation analysis roughness exponent to both artificial and traffic time series and verify that this kind of approach is able to reveal significant information that remains hidden with Legendre spectrum. Meanwhile, we illustrate the presence of non-concavities in the spectra of cross-correlation between traffic series by the presence or absence of accidents and quantify the presence or absence of scale invariance and the generating mechanism of multifractality for cross-correlation between traffic signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Leutzbach, W.: Introduction to the Theory of Traffic Flow. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  2. Kerner, B.S.: The Physics of Traffic. Springer, New York (2004)

    Book  Google Scholar 

  3. Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)

    Article  MathSciNet  Google Scholar 

  4. Helbing, D.: Traffic and related self-driven manyparticle systems. Rev. Mod. Phys. 73, 1067–1141 (2001)

    Article  Google Scholar 

  5. Safonov, L.A., Tomer, E., Strygin, V.V., Ashkenazy, Y., Havlin, S.: Delay-induced chaos with multifractal attractor in a traffic flow model. Europhys. Lett. 57, 151–158 (2002)

    Article  Google Scholar 

  6. Daoudi, K., Lévy Véhel, J.: Signal representation and segmentation based on multifractal stationarity. Signal Process 82, 2015–2024 (2002)

    Article  MATH  Google Scholar 

  7. Gasser, I., Sirito, G., Werner, B.: Bifurcation analysis of a class of ‘car following’ traffic models. Phys. D 197, 222–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wilson, R.E.: Mechanisms for spatio-temporal pattern formation in highway traffic models. Philos. Trans. R. Soc. A 366, 2017–2032 (2008)

    Article  MATH  Google Scholar 

  9. Bai, M.Y., Zhu, H.B.: Power law and multiscaling properties of the Chinese stock market. Phys. A 389, 1883–1890 (2010)

    Article  Google Scholar 

  10. Wang, J., Shang, P., Zhao, X., Xia, J.: Multiscale entropy analysis of traffic time series. Int. J. Mod. Phys. C 24, 1350006 (2013)

    Article  MathSciNet  Google Scholar 

  11. Shang, P., Lu, Y., Kamae, S.: Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos Solitons Fractals 36, 82–90 (2008)

    Article  Google Scholar 

  12. Nicholson, H., SwannThe, C.D.: Prediction of traffic flow volumes based on spectral analysis. Transp. Res. 8, 533C538 (1974)

    Article  Google Scholar 

  13. Stathopoulos, A., Karlaftis, M.G.: Spectral and cross-spectral analysis of urban traffic flows. In: 2001 IEEE intelligent transportation systems conference proceedings, pp. 820–825 (2001)

  14. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.E.: Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A 316, 87–114 (2002)

    Article  Google Scholar 

  15. Ivanov, P.C., Amaral, L.A.N., Goldberger, A.L., Havlin, S., Rosenblum, M.G., Struzik, Z., Stanley, H.E.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999)

    Article  Google Scholar 

  16. Sassi, R., Signorini, M.G., Cerutti, S.: Multifractality and heart rate variability. Chaos 19, 028507 (2009)

    Article  MathSciNet  Google Scholar 

  17. Mandelbrot, B.: Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire. C.R. Acad. Sci. Paris 278(289–292), 355–358 (1974)

    MathSciNet  MATH  Google Scholar 

  18. Meyer, M., Stiedl, O.: Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur. J. Appl. Physiol. 90, 305–316 (2003)

    Article  Google Scholar 

  19. Peng, C.K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  Google Scholar 

  20. Hu, K., Chen, Z., Ivanov, P.C., Carpena, P., Stanley, H.E.: Effect of trends on detrended fluctuation analysis. Phys. Rev. E 64, 011114 (2001)

    Article  Google Scholar 

  21. Chen, Z., Ivanov, P.C., Hu, K., Stanley, H.E.: Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 65, 041107 (2002)

    Article  Google Scholar 

  22. Loiseau, P., Médigue, C., Gonçalves, P., Attia, N., Seuret, S., Cottin, F., Chemla, D., Sorine, M., Barral, J.: Large deviations estimates for the multiscale analysis of heart variability. Phys. A 391, 5658–5671 (2012)

    Article  Google Scholar 

  23. Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys. Rev. Lett. 100, 084102 (2008)

    Article  Google Scholar 

  24. Lin, A., Shang, P., Zhao, X.: The cross-correlations of stock markets based on DCCA and time-delay DCCA. Nonlinear Dyn. 67, 425–435 (2012)

    Article  MathSciNet  Google Scholar 

  25. Siqueira, E.L., Stosic, T., Bejan, L., Stosic, B.: Statistical mechanics and its applications. Phys. A 389, 2739–2743 (2010)

    Article  Google Scholar 

  26. Podobnik, B., Horvatic, D., Petersen, A., Stanley, H.E.: Cross-correlations between volume change and price change. Proc. Natl. Acad. Sci. USA 106, 22079–22084 (2009)

    Article  MATH  Google Scholar 

  27. Podobnik, B., Jiang, Z.Q., Zhou, W.X., Stanley, H.E.: Statistical tests for power-law cross-correlated processes. Phys. Rev. E 84, 066118 (2011)

    Article  Google Scholar 

  28. Horvatic, D., Stanley, H.E., Podobnik, B.: Detrended cross-correlation analysis for non-stationary time series with periodic trends. EPL 94, 18007–18012 (2011)

    Article  Google Scholar 

  29. Podobnik, B., Grosse, I., Horvatic, D., Ilic, S., Ivanov, P.C., Stanley, H.E.: Quantifying cross-correlations using local and global detrending approaches. Eur. Phys. J. B 71, 243–250 (2009)

    Article  Google Scholar 

  30. Yin, Y., Shang, P.: Modified DFA and DCCA approach for quantifying the multiscale correlation structure of financial markets. Phys. A 392, 6442–6457 (2013)

    Article  Google Scholar 

  31. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  32. Riedi, R., Lévy Véhel, J.: Multifractal properties of TCP traffic: a numerical study, Technical Report No. 3129, INRIA Rocquencourt, France (1997). www.dsp.rice.edu/riedi

  33. Canus, C., Lévy-Véhel, J., Tricot, C.: Continuous large deviation multifractal spectrum: definition and estimation. In: Novak, M. (ed.), Proceedings of fractal 98 conference: “fractals and beyond: complexities in the sciences”, pp. 117–128

  34. Lévy Véhel, J., Tricot, C.: On various multifractal spectra. Prog. Probab. 57, 23–42 (2004)

    Google Scholar 

  35. Barral, J., Gonçalves, P.: On the estimation of the large deviations spectrum. J. Stat. Phys. 144, 1256–1283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Makse, H.A., Havlin, S., Schwartz, M., Stanley, H.E.: Method for generating long-range correlations for large systems. Phys. Rev. E 53, 5445–5449 (1996)

    Article  Google Scholar 

  37. Hosking, J.: Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Podobnik, B., Ivanov, PCh., Jazbinsek, V., Trontelj, Z., Stanley, H.E., Grosse, I.: Power-law correlated processes with asymmetric distributions. Phys. Rev. E 71, 025104 (2005)

    Article  MATH  Google Scholar 

  39. Podobnik, B., Ivanov, P.C., Biljakovic, K., Horvatic, D., Stanley, H.E., Grosse, I.: Fractionally integrated process with power-law correlations in variables and magnitudes. Phys. Rev. E 72, 026121 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the Fundamental Research Funds for the Central Universities (2015YJS168) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengjian Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Shang, P. Multifractal cross-correlation analysis of traffic time series based on large deviation estimates. Nonlinear Dyn 81, 1779–1794 (2015). https://doi.org/10.1007/s11071-015-2106-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2106-1

Keywords

Navigation