Skip to main content
Log in

Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A novel memristive chaotic circuit is presented, which is derived from the classical Chua’s circuit by substituting Chua’s diode with a first-order memristive diode bridge. The dynamical characteristics with the variations of circuit parameters are investigated both theoretically and numerically. The research results indicate that this circuit has three determined equilibrium points and displays complex nonlinear phenomena including coexisting bifurcation modes and coexisting attractors. Specifically, with another parameter setting, the memristive Chua’s circuit can generate hidden attractors and coexisting hidden attractors in a narrow parameter region. The phenomena of self-excited attractors and hidden attractors are experimentally captured from a physical circuit, which verify the numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)

    Article  Google Scholar 

  2. Chua, L.O.: Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

  3. Li, Y.X., Huang, X., Guo, M.: The generation, analysis, and circuit implementation of a new memristor based chaotic system. Math. Problems Eng. 2013, 398306 (2013)

    MathSciNet  Google Scholar 

  4. Bao, B.C., Xu, J.P., Zhou, G.H., Ma, Z.H., Zou, L.: Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20, 120502 (2011)

    Article  Google Scholar 

  5. Wang, G.Y., He, J.L., Yuan, F., Peng, C.J.: Dynamical Behaviors of a \(\text{ TiO }_{2}\) Memristor Oscillator. Chin. Phys. Lett. 30, 110506 (2013)

    Article  Google Scholar 

  6. Bao, B.C., Hu, F.W., Liu, Z., Xu, J.P.: Mapping equivalent approach to analysis and realization of memristor-based dynamical circuit. Chin. Phys. B 23, 070503 (2014)

    Article  Google Scholar 

  7. Ahamed, A.I., Srinivasan, K., Murali, K., Lakshmanan, M.: Observation of chaotic beats in a driven memristive Chua’s circuit. Int. J. Bifurc. Chaos 21, 737–757 (2011)

    Article  MATH  Google Scholar 

  8. Bao, B.C., Jiang, P., Wu, H.G., Hu, F.W.: Complex transient dynamics in periodically forced memristive Chua’s circuit. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1815-1

    Google Scholar 

  9. Buscarino, A., Fortuna, L., Frasca, M., Gambuzza, L.V.: A chaotic circuit based on Hewlett–Packard memristor. Chaos 22, 023136 (2012)

  10. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviors. Electron. Lett. 46, 228–230 (2010)

    Article  Google Scholar 

  11. Bao, B.C., Ma, Z.H., Xu, J.P., Liu, Z., Xu, Q.: A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21, 2629–2645 (2011)

  12. Fitch, A.L., Yu, D., Iu, H.H., Sreeram, V.: Hyperchaos in a memristor-based modified canonical Chua’s circuit. Int. J. Bifurc. Chaos 22, 1250133 (2012)

    Article  Google Scholar 

  13. Petráš, I.: Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II 57, 975–979 (2010)

  14. Deng, H.M., Wang, Q.H.: Dynamics and synchronization of memristor-based fractional-order system. Int. J. Modern Nonlinear Theory Appl. 2, 40320 (2013)

    MathSciNet  Google Scholar 

  15. Moaddy, K.: Amplitude modulation and synchronization of fractional-order memristor-based Chua’s circuit. Abstr. Appl. Anal. 2013, 758676 (2013)

    MathSciNet  Google Scholar 

  16. Cafagna, D., Grassi, G.: On the simplest fractional-order memristor-based chaotic system. Nonlinear Dyn. 70, 1185–1197 (2012)

    Article  MathSciNet  Google Scholar 

  17. Kuznetsov, N., Kuznetsova, O., Leonov, G., Vagaitsev, V.: Analytical-numerical localization of hidden attractor in electrical Chua’s circuit. Informatics in control, automation and robotics. Springer, Berlin (2013)

  18. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D 241, 1482–1486 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Li, Q., Zeng, H., Yang, X.S.: On hidden twin attractors and bifurcation in the Chua’s circuit. Nonlinear Dyn. 77, 255–266 (2014)

    Article  MathSciNet  Google Scholar 

  21. Bao, B.C., Yu, J.J., Hu, F.W.: Generalized memristor consisting of diode bridge with first order parallel RC filter. Int. J. Bifurc. Chaos 24, 1450143 (2014)

    Article  Google Scholar 

  22. Li, C.B., Sprott, J.C.: Coexisting hidden attractors in a 4-D simplified Lorenz system. Int. J. Bifurc. Chaos 24, 1450034 (2014)

    Article  MathSciNet  Google Scholar 

  23. Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electron. Lett. 48, 824–825 (2012)

    Article  Google Scholar 

  24. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point, periodic and strange attractors. Int. J. Bifurc. Chaos 23, 1350093 (2013)

    Article  MathSciNet  Google Scholar 

  26. Li, C.B., Sprott, J.C.: Finding coexisting attractors using amplitude control. Nonlinear Dyn. 78, 2059–2064 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ogata, K., Saito, T.: Coexisting attractors in an oscillator with 2-port hysteresis VCCS. IEICE Trans. Fundam. E86- A, 1550–1553 (2003)

Download references

Acknowledgments

This work is supported by the grants from the National Natural Science Foundations of China (Grant No. 51277017) and the Natural Science Foundations of Jiangsu Province (Grant No. BK20120583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bocheng Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Li, M., Yu, Q. et al. Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit. Nonlinear Dyn 81, 215–226 (2015). https://doi.org/10.1007/s11071-015-1983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1983-7

Keywords

Navigation