Skip to main content
Log in

Robust adaptive chatter-free finite-time control method for chaos control and (anti-)synchronization of uncertain (hyper)chaotic systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel robust adaptive chatter-free finite-time control (RACFFTC) strategy for chaos control and (anti-)synchronization of a class of uncertain (hyper)chaotic systems. First, nonsingular terminal sliding mode surfaces are introduced. Second, a RACFFTC controller with appropriate adaptive laws is designed to provide robustness, high control precision, and fast and finite-time convergence without requiring prior knowledge of the upper bounds of the uncertainties and external disturbances. Because the proposed RACFFTC controller consists of a discontinuous function under integral, the chattering effect is eliminated. The global finite-time stability of the closed-loop system is rigorously proven. Numerical simulations are presented to demonstrate the robustness, effectiveness and feasibility of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chen, G., Dong, X.: From Chaos to Order: Methodologies. Perspectives and Applications. World Scientific, Singapore (1998)

    MATH  Google Scholar 

  2. Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons Fractals. 18, 141–148 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Luo, A.C.J.: A theory for synchronization of dynamical systems. Comm. Nonlinear Sci. Numer. Simul. 14, 1901–1951 (2009)

    Article  MATH  Google Scholar 

  4. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fradkov, A.L., Evans, R.J.: Control of chaos: methods and applications in engineering. Annu. Rev. Control. 29, 33–56 (2005)

    Article  Google Scholar 

  6. Rafikov, M., Balthazar, J.M.: On control and synchronization in chaotic and hyperchaotic systems via linear feedback control. Comm. Nonlinear Sci. Numer. Simul. 13, 1246–1255 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Zheng, H., Hu, J., Wu, P., Liu, L., He, Z.: Study on synchronization and parameters insensitivity of a class of hyperchaotic systems using nonlinear feedback control. Nonlinear Dyn. 67, 1515–1523 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lee, S.M., Ji, D.H., Park, J.H., Won, S.C.: H\(_\infty \) synchronization of chaotic system via dynamic feedback approach. Phys. Lett. A 372, 4905–4912 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ge, Z.M., Yang, C.H.: Chaos synchronization and chaotization of complex chaotic systems in series form by optimal control. Chaos, Solitons Fractals 42, 994–1002 (2009)

    Article  MATH  Google Scholar 

  10. Che, Y.Q., Wang, J., Chan, W.L., Tsang, K.M.: Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control. Nonlinear Dyn. 61, 84757 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Hu, J., Wang, C., Lu, J.: Adaptive synchronization of uncertain Röller hyperchaotic system based on parameter identification. Phys. Lett. A 321, 50–55 (2004)

    Article  MATH  Google Scholar 

  12. Mossa Al-sawalha, M., Noorani, M.S.M., Al-dlalah, M.M.: Adaptive anti-synchronization of chaotic systems with fully unknown parameters. Comput. Math. Appl. 59, 3234–3244 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mossa Al-Sawalha, M., Noorani, M.S.M.: Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters. Comm. Nonlinear Sci. Numer. Simul. 15, 10361047 (2010)

    Google Scholar 

  14. Wang, Z.L., Shi, X.R.: Adaptive QS synchronization of non-identical chaotic systems with unknown parameters. Nonlinear Dyn. 59, 559567 (2010)

    Google Scholar 

  15. Li, W., Chang, K.: Robust synchronization of drive response chaotic systems via adaptive sliding mode control. Chaos Solitons Fractals 39, 20862092 (2009)

    MathSciNet  Google Scholar 

  16. Cai, N., Jing, Y., Zhang, S.: Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. Comm. Nonlinear Sci. Numer. Simul. 15, 16131620 (2010)

    MathSciNet  Google Scholar 

  17. Kebriaei, H., Yazdanpanah, M.J.: Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity. Comm. Nonlinear Sci. Numer. Simul. 15, 430441 (2010)

    Article  MathSciNet  Google Scholar 

  18. Pourmahmood, M., Khanmohammadi, S., Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller. Comm. Nonlinear Sci. Numer. Simul. 16, 2853–2868 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, C.C., Ou, C.J.: Adaptive terminal sliding mode control subject to input nonlinearity for synchronization of chaotic gyros. Comm. Nonlinear Sci. Numer. Simul. 18, 682–691 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, C.S.: A new sliding control strategy for nonlinear system solved by the Lie-group differential algebraic equation method. Comm. Nonlinear Sci. Numer. Simul. 19, 2012–2038 (2014)

    Article  Google Scholar 

  21. Yu, F., Song, Y.: Complete switched generalized function projective synchronization of a class of hyperchaotic systems with unknown parameters and disturbance inputs. J. Dyn. Sys. Meas. Control 136, 014505–014505 (2013)

  22. Zhang, X., Liu, X., Zhu, Q.: Adaptive chatter free sliding mode control for a class of uncertain chaotic systems. Appl. Math. Comput. 232, 431–435 (2014)

    Article  MathSciNet  Google Scholar 

  23. Bhat, S., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Contr. 43, 678–682 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bhat, S.P., Bernstein, D.S.: Finite time stability of continuous autonomous systems. SIAM. J. Control. Optim. 38, 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Li, S., Tian, Y.: Finite-time synchronization of chaotic systems. Chaos, Solitons Fractals 15, 303310 (2003)

    MathSciNet  Google Scholar 

  26. Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Comm. Nonlinear Sci. Numer. Simul. 14, 2728–2733 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, H., Han, Z.Z., Xie, Q.Y., Zhang, W.: Finite-time synchronization of uncertain unied chaotic systems based on CLF. Nonlinear Anal. Real World Appl. 10, 28422849 (2009)

    Google Scholar 

  28. Yu, W.: Finite-time stabilization of three-dimensional chaotic systems based on CLF. Phys. Lett. A 374, 30213024 (2010)

    Google Scholar 

  29. Cai, N., Li, W., Jing, Y.: Finite-time generalized synchronization of chaotic systems with different order. Nonlinear Dyn. 64, 385393 (2011)

    Article  MathSciNet  Google Scholar 

  30. Aghababa, M.P., Aghababa, H.P.: Finite-time stabilization of a non-autonomous chaotic rotating mechanical system. J. Franklin Inst. 349, 2875–2888 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, R.H., Chen, W.S., Li, S.: Finite-time stabilization for hyper-chaotic Lorenz system families via adaptive control. Appl. Math. Model. 37, 1966–1972 (2013)

    Article  MathSciNet  Google Scholar 

  32. Mei, J., Jiang, M., Wang, X., Han, J., Wang, S.: Finite-time synchronization of drive-response systems via periodically intermittent adaptive control. J. Franklin Inst. 351, 2691–2710 (2014)

  33. Wang, X.Y., Gao, X.L., Wang, L.L.: Finite-time chaos synchronization of a new hyperchaotic Lorenz system. Int. J. Mod. Phys. B 27, 1350033 (2013)

    Article  Google Scholar 

  34. Aghababa, M.P., Aghababa, H.P.: A general nonlinear adaptive control scheme for finite-time synchronization of chaotic systems with uncertain parameters and nonlinear inputs. Nonlinear Dyn. 69, 1903–1914 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Aghababa, M.P., Aghababa, H.P.: Adaptive finite-time synchronization of non-autonomous chaotic systems with uncertainty. J. Comput. Nonlinear Dyn. 8, 031006 (2012)

    Article  Google Scholar 

  36. Hu, Y.A., Li, H.Y., Zhang, C.P., Liu, L.: Robust adaptive finite-time synchronization of two different chaotic systems with parameter uncertainties. J. Appl. Math. 2012, 607491 (2012)

  37. Sun, J., Shen, Y., Wang, X., Chen, J.: Finite-time combination-combination synchronization of four different chaotic systems with unknown parameters via sliding mode control. Nonlinear Dyn. 76, 383–397 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhankui, S., Sun, K.: Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control. Comm. Nonlinear Sci. Numer. Simul. 18, 2540–2548 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Fang, L., Li, T., Li, Z., Li, R.: Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn. 74, 991–1002 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Yang, L., Yang, J.: Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme. Comm. Nonlinear Sci. Numer. Simul. 16, 2405–2413 (2011)

    Article  MATH  Google Scholar 

  41. Man, Z., Pplinski, A.P., Wu, H.R.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. Autom. Control IEEE Trans. 39, 2464–2469 (1994)

    Article  MATH  Google Scholar 

  42. Park, K.B., Ju-Jang, L.: Comments on a robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. Autom. Control IEEE Trans. 41, 761–762 (1996)

    Article  MATH  Google Scholar 

  43. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica. 41, 1957–1964 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Tang, Y.: Terminal sliding mode control for rigid robots. Automatica. 34, 51–56 (1998)

    Article  MATH  Google Scholar 

  45. Bechkenback, E., Bell Man, R.: Inequalities. Springer, Berlin (1971)

    Google Scholar 

  46. Polyaknov, A., Fridman, L.: Stability notions and Lyapunov functions for sliding mode control systems. J. Franklin Inst. 351, 1831–1865 (2014)

    Article  MathSciNet  Google Scholar 

  47. Utkin, V.I.: Sliding Modes in Control Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  48. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, EngleWood Cliffs (1991)

    MATH  Google Scholar 

  49. Liu, C., Liu, T., Liu, L., Liu, K.: A new chaotic attractor. Chaos, Solitons Fractals 22, 1031–1038 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Li, Y., Tang, W.K.S., Chen, G.: Generating hyperchaos via state feedback control. Int. J. Bifur Chaos. 15(10), 3367–3375 (2005)

    Article  Google Scholar 

  51. Dadras, S., Homeni, H.R., Qi, G., Wang, Z.: Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form. Nonlinear Dyn. 67, 1161–1173 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, XT., Kang, HJ. Robust adaptive chatter-free finite-time control method for chaos control and (anti-)synchronization of uncertain (hyper)chaotic systems. Nonlinear Dyn 80, 637–651 (2015). https://doi.org/10.1007/s11071-015-1895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-1895-6

Keywords

Navigation