Skip to main content
Log in

Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using the self-similarity transformation, we find analytical spatial bright and dark self-similar solitons, i.e., the similaritons, of the generalized (2+1)-dimensional quintic nonlinear Schrödinger equation with varying diffraction, nonlinearity, and gain. Characteristic examples with physically relevant behavior of these similaritons are studied, and the stability of these solutions is verified with numerical integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barenblatt, G.I.: Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  2. Ponomarenko, S.A., Agrawal, G.P.: Do solitonlike self-similar waves exist in nonlinear optical media? Phys. Rev. Lett. 97, 013901 (2006)

    Article  Google Scholar 

  3. Finot, C., Millot, G.: Synthesis of optical pulses by use of similaritons. Opt. Expr. 12, 5104 (2004)

    Article  Google Scholar 

  4. Billet, C., Dudley, J.M., Joly, N., Knight, J.C.: Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm. Opt. Express 13, 3236 (2005)

    Article  Google Scholar 

  5. Liang, Yueqian, Wei, Guangmei, Li, Xiaonan: Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation. Nonlinear Dyn. 62, 195 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Zhong, W.P., Belic, M., Petrovic, M.S.: Solitary and extended waves in the generalized sinh-Gordonequation with a variable coefficient. Nonlinear Dyn. 76, 717 (2014)

  7. Cardoso, W.B., Avelar, A.T., Bazeia, D., Hussein, M.S.: Solitons of two-component Bose–Einstein condensates modulated in space and time. Phys. Lett. A 374, 2356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ozeki, Y., Inoue, T.: Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression. Opt. Lett. 31, 1606 (2006)

    Article  Google Scholar 

  9. Xu, Siliu, Liang, Jiangchu, Yi, Lin: Self-similar solitary waves in Bessel optical lattices. J. Opt. Soc. Am. B 27, 99 (2010)

    Article  MATH  Google Scholar 

  10. Ponomarenko, S.A., Agrawal, G.P.: Nonlinear interaction of two or more similaritons in loss- and dispersion-managed fibers. J. Opt. Soc. Am. B 25, 983 (2008)

    Article  Google Scholar 

  11. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  12. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R. (eds.): Emergent Non-linear Phenomena in Bose–Einstein Condensates: Theory and Experiment, vol. 45. Springer, Berlin (2008)

    Google Scholar 

  13. Inouye, S., Andrews, M.R., Stenger, J., et al.: Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151 (1998)

    Article  Google Scholar 

  14. Theis, M., Thalhammer, G., Winkler, K., Hellwig, M., Ruff, G., Grimm, R., Den-schlag, J.H.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 93, 123001 (2004)

    Article  Google Scholar 

  15. Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)

    MATH  Google Scholar 

  16. Abdullaev, FKh, Kamchatnov, A.M., Konotop, V.V., Brazhnyi, V.A.: Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett. 90, 230402 (2003)

    Article  Google Scholar 

  17. Rodas-Verde, M.I., Michinel, H., Pérez-García, V.M.: Controllable soliton emission from a Bose–Einstein condensate. Phys. Rev. Lett. 95, 153903 (2005)

    Article  Google Scholar 

  18. Kivshar, Y.S., Agrawal, G.P.: Solitons: Fom Fibers to Photonic Crystals. Academic Press, San Diego (2003)

  19. Senthilnathan, K., Qian, Li: Robust pedestal-free pulse compression in cubic–quintic nonlinear media. Phys. Rev. A 78, 033835 (2008)

  20. Boudebs, G., Cherukulappurath, S., Leblond, H., Troles, J., Smektala, F., Sanchez, F.: Multistable solitons in the cubic–quintic discrete nonlinear Schrödinger equation. Opt. Commun. 219, 427 (2003)

  21. Bemonte-Beitia, J., Cuevas, J.: Exact solutions for the quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity. J. Phys. A 42, 165201 (2009)

  22. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Topological quasi-soliton solutions for the nonlinear cubic-quintic Schrödinger equation model. In: Proceedings of SPIE. International Society for Optical Engineering, vol. 4271, p. 292 (2001)

  23. Hao, R.Y., Li, L., Li, Z.H., Yang, R.C., Zhou, G.S.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic–quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383 (2005)

    Article  Google Scholar 

  24. Senthilnathan, K., Li, Qian, Nakkeeran, K., Wai, P.K.A.: Robust pedestal-free pulse compression in cubic–quintic nonlinear media. Phys. Rev. A 78, 033835 (2008)

    Article  Google Scholar 

  25. Dai, C.Q., Wang, Y.Y., Yan, C.J.: Chirped and chirp-free self-similar cnoidal and solitary wave solutions of the cubic–quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 283, 1489 (2010)

    Article  Google Scholar 

  26. Belmonte-Beitia, J., Calvo, G.F.: Exact solutions for the quintic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. Phys. Lett. A 373, 448453 (2009)

    Article  MathSciNet  Google Scholar 

  27. Xu, Siliu, Belić, M.R., Zhong, Wei-Ping: Three-dimensional spatio-temporal vector solitary waves in coupled nonlinear Schrödinger equations with variable coefficients. J. Opt. Soc. Am. B 30, 113 (2013)

    Article  Google Scholar 

  28. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Nonautonomous matter-wave solitons near the Feshbach resonance. Phys. Rev. A 81, 023610 (2010)

    Article  Google Scholar 

  29. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  30. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Article  Google Scholar 

  31. Petrović, N.Z., Belić, M.R., Zhong, W.P.: Exact traveling-wave and spatiotemporal soliton solutions to the generalized (3+1)-dimensional Schrödinger equation with polynomial nonlinearity of arbitrary order. Phys. Rev. E 83, 026604 (2011)

    Article  Google Scholar 

  32. Yang, Zhan-Ying, Zhang, Li-Chen: Snakelike nonautonomous solitons in a graded-index grating waveguide. Phys. Rev. A 81, 043826 (2010)

    Article  Google Scholar 

  33. Serkin, V.N., Hasegawa, A., Belyaeva, T.L.: Comment on “exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients”. Phys. Rev. Lett. 92, 199401 (2004)

    Article  Google Scholar 

  34. Tomlinson, W.J., Hawkins, R.J., Weiner, A.M., et al.: Dark optical solitons with finite-width background pulses. J. Opt. Soc. Am. B 6, 329 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in China by the Young teachers corporate action plan Project (XD2012358) and the National college students’ innovative entrepreneurial training program at local colleges, under Grant 201210927052, in China. Work in Qatar is supported by the NPRP 6-021-1-005 Project with the Qatar National Research Fund (a member of the Qatar Foundation). Work in Serbia has been supported by the Project OI 171006 with the Serbian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Liu Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SL., Petrović, N. & Belić, M.R. Exact solutions of the (2+1)-dimensional quintic nonlinear Schrödinger equation with variable coefficients. Nonlinear Dyn 80, 583–589 (2015). https://doi.org/10.1007/s11071-014-1891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1891-2

Keywords

Navigation