Skip to main content
Log in

Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A systematic method is given to derive Lie point symmetries of nonlinear fractional ordinary differential equations and illustrate its applicability through the fractional Riccati equation and nonlinear fractional ordinary differential equation of Liénard type with Riemann–Liouville fractional derivative. Using the obtained Lie point symmetries, we construct their exact solutions wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakkyaraj, T., Sahadevan, R.: An approximate solution to some classes of fractional nonlinear partial differential-difference equation using Adomian decomposition method. J. Fract. Calc. Appl. 5(1), 37–52 (2014)

    MathSciNet  Google Scholar 

  2. Bakkyaraj, T., Sahadevan, R.: On solutions of two coupled fractional time derivative Hirota equations. Nonlinear Dyn. 77, 1309–1322 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bluman, G.W., Anco, S.: Symmetry and Integration Methods for Differential Equations. Springer, Heidelburg (2002)

    MATH  Google Scholar 

  4. Buckwar, E., Luchko, Y.: Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Djordjevic, V.D., Atanackovic, T.M.: Similarity solutions to nonlinear heat conduction and Burgers/Korteweg–deVries fractional equations. J. Comput. Appl. Math. 212, 701–714 (2008)

    Article  MathSciNet  Google Scholar 

  6. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S. Yu.: Continuous transformation groups of fractional differential equations. Vestnik USATU. 9 3(21), 125–135 (2007). (in Russian)

  7. Gazizov, R.K., Kasatkin, A.A.: Symmetry properties of fractional diffusion equations. Phys. Scr. T136, 014016 (2009)

    Article  Google Scholar 

  8. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S. Yu.: Group invariant solutions of fractional differential equations. In: Machado, J.A.T., Luo, A.C.J., Barbosa, R.S., Silva, M.F., Figueiredo, L.B. (eds.) Nonlinear Science and Complexity, pp. 51–58. Springer, Heidelburg (2011)

  9. Gorenflo, R., Luchko, Y., Mainardi, F.: Wright functions as scale-invariant solutions of the diffusion-wave equation. J. Comput. Appl. Math. 118, 175–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

  11. Hydon, P.E.: Symmetry Methods for Differential Equations. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  12. Ibragimov, N.H.: CRC Handbook of Lie Group Analysis of Differential Equations- Symmetries, Exact Solutions and Conservation Laws, vol. 1. CRC Press, New York (1994)

    Google Scholar 

  13. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, England (1999)

    MATH  Google Scholar 

  14. Kasatkin, A.A.: Symmetry properties for systems of two ordinary fractional differential equations. Ufa Math. J. 4(1), 65–75 (2012)

    MathSciNet  Google Scholar 

  15. Kasatkin, A.A.: Symmetries and exact solutions of equations with fractional order derivative of Riemann–Liouville. Ph.D. Dissertation, Ufa State Aviation Technical University, Ufa (2013). (in Russian)

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, The Netherlands (2006)

  17. Lakshmanan, M., Kaliappan, P.: Lie transformations, nonlinear evolution equations, and Painleve forms. J. Math. Phys. 24, 795–806 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Luchko, Y., Gorenflo, R.: Scale invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1, 63–78 (1998)

    MATH  MathSciNet  Google Scholar 

  19. Mathai, A.M., Saxena, R.K., Haubold, H.J.: A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations. Astrophys. Space Sci. 305, 283–288 (2006)

    Article  MATH  Google Scholar 

  20. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  21. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Heidelberg (1986)

    MATH  Google Scholar 

  22. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982)

    MATH  Google Scholar 

  23. Pandey, S.N., Bindu, P.S., Senthilvelan, M., Lakshmanan, M.: A group theoretical identification of integrable equations in the Liénard-type equation \(\ddot{x}+f(x)\dot{x}+g(x)=0\). II. equations having maximal Lie point symmetries. J. Math. Phys. 50, 102701 (2009)

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  25. Prabhakar, T.R.: A singular integral equation with a generalized Mittag–Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MATH  MathSciNet  Google Scholar 

  26. Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalised Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393, 341–347 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Samko, S., Kilbas, A.A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Switzerland (1993)

Download references

Acknowledgments

The authors would like to thank anonymous referees for their valuable suggestions. One of the authors (T. Bakkyaraj) would like to thank the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sahadevan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakkyaraj, T., Sahadevan, R. Invariant analysis of nonlinear fractional ordinary differential equations with Riemann–Liouville fractional derivative. Nonlinear Dyn 80, 447–455 (2015). https://doi.org/10.1007/s11071-014-1881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1881-4

Keywords

Navigation