Skip to main content
Log in

A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Using the dual method, we start with a traditional road traffic network with a constructed logic network with small-world characteristics and construct the complex network of road traffic. After analyzing and comparing with other complex networks, the time delay, restorative, and other characteristics are presented for the complex network of road traffic, and then, the cascading failure model of the complex network is simulated. The simulation results show that using different time delays, an incident dissipation factor and load capacity can reasonably avoid a cascading failure, and they can remove its effects. In addition, our results provide value and guidance for building a road traffic network that prevents and removes the cascading failure of a road network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  2. Barabási, A.L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A Stat. Mech. Appl. 272(1), 173–187 (1999)

    Article  Google Scholar 

  3. Lee, D.S., Goh, K.I., Kahng, B., Kim, D.: Sandpile avalanche dynamics on scale-free networks. Phys. A Stat. Mech. Appl. 338(1), 84–91 (2004)

    Article  Google Scholar 

  4. Xu, J., Wang, X.F.: Cascading failures in scale-free coupled map lattices. Phys. A Stat. Mech. Appl. 349(3), 685–692 (2005)

    Article  Google Scholar 

  5. Fang, X., Yang, Q., Yan, W.: Modeling and analysis of cascading failure in directed complex networks. Saf. Sci. 65, 1–9 (2014)

    Article  Google Scholar 

  6. Wang, Z.W., Kuang, A.W., Wang, H.J.: Calculating node importance considering cascading failure in traffic. Networks 5(1), 264–269 (2013)

    Google Scholar 

  7. Luo, Z.Y., Li, K.P., Ma, X., Zhou, J.: Analyzing railway accidents based on complex network and cascading failure. In: Proceedings of the 2013 international conference on electrical and information technologies for rail transportation (EITRT2013)-volume I. Springer, Berlin, pp. 513–518(2014)

  8. Zio, E., Golea, L.R., Sansavini, G.: Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm. Reliab. Eng. Syst. Saf. 103, 72–83 (2012)

    Article  Google Scholar 

  9. Wang, X.F., Xu, J.: Cascading failures in coupled map lattices. Phys. Rev. E 70(5), 056113 (2004)

  10. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4), 045104 (2004)

    Article  Google Scholar 

  11. Centola, D., Eguíluz, V.M., Macy, M.W.: Cascade dynamics of complex propagation. Phys. A Stat. Mech. Appl. 374(1), 449–456 (2007)

    Article  Google Scholar 

  12. Wang, B., Kim, B.J.: A high-robustness and low-cost model for cascading failures. Europhys. Lett. 78(4), 48001 (2007)

    Article  Google Scholar 

  13. Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66(6), 065102 (2002)

    Article  Google Scholar 

  14. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  15. Tang, T.Q., Li, J.G., Huang, H.J., Yang, X.B.: A car-following model with real-time road conditions and numerical tests. Measurement 48, 63–76 (2014)

    Article  Google Scholar 

  16. Tang, T.Q., Caccetta, L., Wu, Y.H., Huang, H.J., Yang, X.B.: A macro model for traffic flow on road networks with varying road conditions. J. Adv. Transp. 48(4), 304–317 (2012)

  17. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76(4), 2017–2023 (2014)

  18. Tang, T.Q., Shi, W.F., Shang, H.Y., Wang, Y.P.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)

  19. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. phys. 2(12), 2221–2229 (1992)

    Google Scholar 

  20. Tang, T.Q., Li, C.Y., Huang, H.J., Shang, H.Y.: A new fundamental diagram theory with the individual difference of the driver’s perception ability. Nonlinear Dyn. 67(3), 2255–2265 (2012)

    Article  Google Scholar 

  21. Tang, T.Q.: A helicopter’s formation flying model in the low airspace with two telegraph poles and electrical wire. Nonlinear Dyn. 69(1–2), 399–408 (2012)

    Article  Google Scholar 

  22. Tang, T.Q., Huang, H.J., Shang, H.Y.: A new pedestrian-following model for aircraft boarding and numerical tests. Nonlinear Dyn. 67(1), 437–443 (2012)

    Article  Google Scholar 

  23. Motter, A.E., Nishikawa, T., Lai, Y.C.: Range-based attack on links in scale-free networks: are long-range links responsible for the small-world phenomenon? Phys. Rev. E 66(6), 065103 (2002)

    Article  Google Scholar 

  24. Motter, A.E., de Moura, A.P.S., Lai, Y.C., Dasgupta, P.: Topology of the conceptual network of language. Phys. Rev. E 65(6), 065102 (2002)

    Article  Google Scholar 

  25. Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 098701 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Social Science Foundation of China (Grant Nos. 11CJY067, 14CJY052, 14XGL011) and the Humanities and Social Sciences Programming Project of the Ministry of Education, China (Grant Nos. 12YJC630200, 12YJC630100) and the Natural Science Foundation of Gansu Province, China (Grant Nos. 1208RJZA164, 1308RJYA042, 145RJZA190) and the Construction of Science and Technology Key Project in Gansu Province (Grant No. JK2013-21) and the Social Sciences planning project in Gansu Province, China (Grant No. 13YD066) and the Young Scholars Science Foundation of Lanzhou Jiao tong University (Grant No. 2012056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Wang, B., Xue, Y. et al. A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions. Nonlinear Dyn 80, 413–420 (2015). https://doi.org/10.1007/s11071-014-1878-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1878-z

Keywords

Navigation