Skip to main content
Log in

Neural adaptive control of uncertain chaotic systems with input and output saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the neural adaptive control design problem of a class of chaotic systems with uncertain dynamics, input and output saturation. To attenuate the effect caused by input and output saturation, a constructed auxiliary system is used to prevent the stability of closed loop system from being destroyed. Radial basis function neural networks are used in online approximation of the uncertain dynamics. Both state feedback and output feedback control laws are designed. In the output feedback situation, a high-order sliding-mode observer is used to estimate the system states. The stability of closed loop system is proved rigorously based on Lyapunov theorem. The effectiveness of the proposed methods is demonstrated by controlling Duffing system and Genesio system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, A., Lu, J., Lü, J., Yu, S.: Generating hyperchaotic lü attractor via state feedback control. Phys. A Stat. Mech. Appl. 364, 103–110 (2006)

    Article  Google Scholar 

  2. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (1999)

    Google Scholar 

  3. Chen, G., Dong, X.: On feedback control of chaotic nonlinear dynamic systems. Int. J. Bifurc. Chaos 2(02), 407–411 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, G., Dong, X.N.: On feedback control of chaotic continuous-time systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(9), 591–601 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9(07), 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, L., Yu, X.: On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 46(6), 767–772 (1999)

    Article  MATH  Google Scholar 

  7. Chen, M., Wu, Q., Jiang, C.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dyn. 70(4), 2421–2432 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Farivar, F., Shoorehdeli, M.A., Nekoui, M.A., Teshnehlab, M.: Chaos control and modified projective synchronization of unknown heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive backstepping control. Nonlinear Dyn. 67(3), 1913–1941 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gao, S., Dong, H., Chen, Y., Ning, B., Chen, G., Yang, X.: Approximation-based robust adaptive automatic train control: an approach for actuator saturation. IEEE Trans. Intell. Transp. Syst. 14(4), 1733–1742 (2013)

    Article  Google Scholar 

  11. Genesio, R., Tesi, A.: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems. Automatica 28(3), 531–548 (1992)

    Article  MATH  Google Scholar 

  12. Ioannou, P.A., Kokotovic, P.V.: Instability analysis and improvement of robustness of adaptive control. Automatica 20(5), 583–594 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang, Z.P., Lefeber, E., Nijmeijer, H.: Saturated stabilization and tracking of a nonholonomic mobile robot. Syst. Control Lett. 42(5), 327–332 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karimi, B., Menhaj, M.B.: Non-affine nonlinear adaptive control of decentralized large-scale systems using neural networks. Inf. Sci. 180(17), 3335–3347 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Khalil, H.K.: Adaptive output feedback control of nonlinear systems represented by input–output models. IEEE Trans. Autom. Control 41(2), 177–188 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  17. Labiod, S., Guerra, T.M.: Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy Sets Syst. 158(10), 1126–1137 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lin, D., Wang, X., Yao, Y.: Fuzzy neural adaptive tracking control of unknown chaotic systems with input saturation. Nonlinear Dyn. 67(4), 2889–2897 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, L., Pu, J., Song, X., Fu, Z., Wang, X.: Adaptive sliding mode control of uncertain chaotic systems with input nonlinearity. Nonlinear Dyn. 76, 1–9 (2013)

    MathSciNet  Google Scholar 

  22. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems. Nonlinear Dyn. 57(3), 431–439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  24. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12(03), 659–661 (2002)

    Article  MATH  Google Scholar 

  25. Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Control 50(6), 841–846 (2005)

    Article  Google Scholar 

  26. Lü, J., Lu, J.: Controlling uncertain lü system using linear feedback. Chaos Solitons Fractals 17(1), 127–133 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mahmoud, G.M., Mahmoud, E.E.: Complete synchronization of chaotic complex nonlinear systems with uncertain parameters. Nonlinear Dyn. 62(4), 875–882 (2010)

    Article  MATH  Google Scholar 

  28. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (1991)

    Article  Google Scholar 

  30. Quimby, R.S.: Output saturation in a 980-nm pumped erbium-doped fiber amplifier. Appl. Opt. 30(18), 2546–2552 (1991)

    Article  Google Scholar 

  31. Shen, C., Yu, S., Lu, J., Chen, G.: Designing hyperchaotic systems with any desired number of positive Lyapunov exponents via a simple model. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2380–2389 (2014)

    Article  Google Scholar 

  32. Shen, C., Yu, S., Lu, J., Chen, G.: A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 61(3), 854–864 (2014)

    Article  Google Scholar 

  33. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, C., Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12(7), 1199–1206 (2001)

    Article  MATH  Google Scholar 

  35. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  36. Wang, X.F., Zhong, G.Q., Tang, K.S., Man, K.F., Liu, Z.F.: Generating chaos in Chua’s circuit via time-delay feedback. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 48(9), 1151–1156 (2001)

  37. Wen, C., Zhou, J., Liu, Z., Su, H.: Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance. IEEE Trans. Autom. Control 56(7), 1672–1678 (2011)

    Article  MathSciNet  Google Scholar 

  38. Wiggins, S.: Chaos in the quasiperiodically forced Duffing oscillator. Phys. Lett. A 124(3), 138–142 (1987)

    Article  MathSciNet  Google Scholar 

  39. Yu, W., Chen, G., Lu, J., Kurths, J.: Synchronization via pinning control on general complex networks. SIAM J Control Optim. 51(2), 1395–1416 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Zhang, R., Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. 66(4), 831–837 (2011)

    Article  MATH  Google Scholar 

  41. Zhou, J., an Lu, J., Lu, J.: Adaptive synchronization of an uncertain complex dynamical network. IEEE Trans. Autom. Control 51(4), 652–656 (2006)

    Article  Google Scholar 

  42. Zhou, J., Wen, C. (eds.): Adaptive backstepping control. In: Adaptive Backstepping Control of Uncertain Systems, pp. 9–31. Springer, Berlin (2008)

Download references

Acknowledgments

This work is supported jointly by the National Natural Science Foundation of China (Nos. 61322307 and 61233001), Fundamental Research Funds for Central Universities (No. 2013JBZ007), and Beijing Jiaotong University Research Program (No. RCS2012ZZ003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hairong Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Dong, H. & Ning, B. Neural adaptive control of uncertain chaotic systems with input and output saturation. Nonlinear Dyn 80, 375–385 (2015). https://doi.org/10.1007/s11071-014-1875-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1875-2

Keywords

Navigation