Skip to main content
Log in

Stochastic Hopf bifurcation analysis in a stochastic lagged logistic discrete-time system with Poisson distribution coefficient

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, stochastic Hopf bifurcation behavior of a stochastic lagged logistic system is investigated. Firstly, the stochastic lagged logistic system with random parameter is approximately transformed as its equivalent deterministic system by the orthogonal polynomial approximation of discrete random function in the Hilbert spaces. Then, according to the bifurcation conditions of deterministic discrete system, Hopf bifurcation is existent in the equivalent deterministic system by mathematical analysis. Moreover, the direction and stability of its bifurcation is discussed by the normal form and center manifold theory. Finally, we verify the influence for the different random intensity on bifurcation critical value by numerical simulations and find that Hopf bifurcation phenomena under the influence of random intensity happen to drift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marichal, R., Pin̈eiro, J.D., Gonzlez, E., Torres, J.: Study of pitchfork bifurcation in discrete hopfield neural network. Mach. Learn. Syst. Eng. 68, 121–130 (2010)

    Article  Google Scholar 

  2. He, Z.M., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. Real World Appl. 12, 403–417 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Zeng, L., Zhao, Y., Huang, Y.: Period-doubling bifurcation of a discrete metapopulation model with a delay in the dispersion terms. Appl. Math. Lett. 21, 47–55 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Jorge, D., Cristina, J., Nuno, M., Josep, S.: Scaling law in saddle-node bifurcations for one-dimensional maps: a complex variable approach. Nonlinear Dyn. 67, 541–547 (2012)

    Article  MATH  Google Scholar 

  5. Loretti, I.D., Dumitru, O.: Neimark–Sacker bifurcation for the discrete-delay Kaldor model. Chaos Solitons Fractals 40, 2462–2468 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Yue, Y., Xie, J.H.: Neimark–Sacker-pitchfork bifurcation of the symmetric period fixed point of the Poincaré map in a three-degree-of-freedom vibro-impact system. Int. J. Nonlinear Mech. 48, 51–58 (2013)

    Article  Google Scholar 

  7. Mircea, G., Opris, D.: Neimark–Sacker and flip bifurcations in a discrete-time dynamic system for Internet congestion. WSEAS Trans. Math. 8, 63–72 (2009)

    MathSciNet  Google Scholar 

  8. Ma, S.J.: The stochastic Hopf bifurcation analysis in Brusselator system with random parameter. Appl. Math. Comput. 219, 306–319 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Yuan, Z., Hu, D., Huang, L.: Stability and bifurcation analysis on a discrete-time system of two neurons. Appl. Math. Lett. 17, 1239–1245 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, S.S., Shi, J.P.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253, 3440–3470 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Song, Y.L., Peng, Y.H.: Stability and bifurcation analysis on a logistic model with discrete and distributed delays. Appl. Math. Comput. 181, 1745–1757 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic Press, London (1992)

    Book  MATH  Google Scholar 

  13. Pareek, N.K., Patidar, V., Sud, K.K.: Image encryption using chaotic logistic map. Image Vis. Comput. 24, 926–934 (2006)

    Article  Google Scholar 

  14. Patidar, V., Sud, K.K., Pareek, N.K.: A pseudo random bit generator based on chaotic logistic map and its statistical testing. Informatica 33, 441–452 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Singh, N., Sinha, A.: Chaos-based secure communication system using logistic map. Opt. Lasers Eng. 48, 398–404 (2010)

    Article  Google Scholar 

  16. Sarker, J.H., Mouftah, H.T.: Secured operating regions of slotted ALOHA in the presence of interfering signals from other networks and DoS attacking signals. J. Adv. Res. 2, 207–218 (2011)

    Article  Google Scholar 

  17. Ausloos, M., Miskiewicz, J.: Delayed information flow effect in economy systems: an ACP model study. Phys. A 382, 179–186 (2007)

    Article  Google Scholar 

  18. Ausloos, M., Miskiewicz, J.: Influence of information flow in the formation of economic cycle. In: The logistic Map and the Rout to Chaos, pp. 223–238. Springer, Berlin (2006)

  19. Schenk-Hoppe, K.R.: Bifurcation of the randomly perturbed logistic map. Discussion Paper 353, University of Bielefeld (1997)

  20. Linz, S.J., Liicke, M.: Affect of additive and multiplicative noise on the first bifurcations of the logistic model. Phys. Rev. A 33, 2673–2694 (1986)

    Article  Google Scholar 

  21. Marcelo, A.S.: Effects of randomness on chaos and order of coupled logistic maps. Phys. Lett. A 364, 389–395 (2007)

    Article  MATH  Google Scholar 

  22. Yang, Z.L., Gao, Y., Gao, Y.T., Zhang, J.: Behavior of a logistic map driven by white noise. Chin. Phys. Lett. 26, 060506 (2009)

    Article  Google Scholar 

  23. Gutierrez, J.M., Iglesias, A.: Logistic map driven by dichotomous noise. Phys. Rev. E 48, 2507–2513 (1993)

    Article  MathSciNet  Google Scholar 

  24. Li, F.G.: Effects of noise on periodic orbits of the logistic map. Cent. Eur. J. Phys. 6, 539–545 (2008)

    Article  Google Scholar 

  25. Sun, H.J., Liu, L., Guo, A.K.: Logistic map graph set. Comput. Graph. 21, 89–103 (1997)

    Article  Google Scholar 

  26. Borwein, P., Erdlyi, T.: Polynomials and Polynomial Inequality. Springer, New York (1995)

    Google Scholar 

  27. lvarez-Nodarse, R.A., Dehesa, J.S.: Distributions of zeros of discrete and continuous polynomials from their recurrence relation. Appl. Math. Comput. 128, 167–190 (2002)

    Article  MathSciNet  Google Scholar 

  28. Valverde, J.C.: Simplest normal forms of Hopf Neimark–Sacker bifurcations. Int. J. Bifurc. Chaos 13, 1831–1839 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wen, G.L., Xu, D.L.: Designing Hopf bifurcations into nonlinear discrete-time systems via feedback control. Int. J. Bifurc. Chaos 14, 2283–2293 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wen, G.L.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 72, 026201 (2005)

    Article  MathSciNet  Google Scholar 

  31. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundations of China (Grant No. 11362001), the Natural Science Foundation of Ningxia Hui Autonomous Region (Grant No. NZ12210) and the innovative funded project for the postgraduate students of Beifang University of Nationalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-juan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Sj., Dong, D. & Yang, Ms. Stochastic Hopf bifurcation analysis in a stochastic lagged logistic discrete-time system with Poisson distribution coefficient. Nonlinear Dyn 80, 269–279 (2015). https://doi.org/10.1007/s11071-014-1866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1866-3

Keywords

Navigation