Skip to main content
Log in

Time-delay feedback controller for amplitude reduction in vortex-induced vibrations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate the possibility of using a time-delay feedback control to suppress the vortex-induced vibrations of an elastically mounted circular cylinder. An appropriate reduced-order wake-oscillator model is employed to determine the cylinder’s displacement and lift fluctuating coefficient in a coupled manner. A parametric study is performed to investigate the effects of the time-delay feedback control on the cross-flow oscillations of the circular cylinder. To study the effects of this controller on the coupled frequency and damping of the aeroelastic system, a linear analysis is performed. It is demonstrated that the presence of time-delay feedback control can result in an increase or decrease in the coupled damping of the aeroelastic system, varying from negative to positive values periodically. Then, the effects of this time-delay feedback controller on the nonlinear responses of the circular cylinder are determined. The results show that a good choice of time-delayed controller parameters can be efficiently implemented to significantly decrease or suppress the vortex-induced vibrations amplitudes in the lock-in or synchronization region and hence greatly reduce the potential oscillation hazard in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Paidoussis, M.P.: Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1. Academic Press, London (1998)

    Google Scholar 

  2. Paidoussis, M.P.: The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics. J. Sound Vib. 310, 462–492 (2008)

    Article  Google Scholar 

  3. Wang, L.: Flutter instability of supported pipes conveying fluid subjected to distributed follower force. Acta Mech. Solida Sin. 25, 46–52 (2012)

    Article  Google Scholar 

  4. Yu, D.L., Paidoussis, M.P., Shen, H.J., Wang, L.: Dynamic stability of periodic pipes conveying fluid. J. Appl. Mech. 81, 011008 (2013)

    Article  Google Scholar 

  5. Zhou, X.P.: Vibration and stability of ring-stiffened thin-walled cylindrical shells conveying fluid. Acta Mech. Solida Sin. 25, 168–176 (2012)

    Article  Google Scholar 

  6. Chen, S.S.: Flow-Induced Vibration of Circular Cylindrical Structures. Hemisphere Publishing, Washington (1987)

    Google Scholar 

  7. Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355–381 (1988)

    Article  Google Scholar 

  8. Paidoussis, M.P., Price, S.J., de Langre, E.: Fluid Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  9. Mackowski, A.W., Williamson, C.H.K.: An experimental investigation of vortex-induced vibration with nonlinear restoring forces. Phys. Fluids 25, 087101 (2013)

    Article  Google Scholar 

  10. Bourguet, R., Jacono, D.L.: Flow-induced vibrations of a rotating cylinder. Bulletin of the American Physical Society, 58, Pittsburgh, Pennsylvania, November 24–26 (2013)

  11. Abdelkefi, A., Hajj, M.R., Nayfeh, A.H.: Piezoelectric energy harvesting from transverse galloping of bluff bodies. Smart Mater. Struct. 22, 015014 (2013)

    Article  Google Scholar 

  12. Dai, H.L., Wang, L.: Vortex-induced vibration of pipes conveying fluid using the method of multiple scales. Theor. Appl. Mech. Lett. 2, 022006 (2012)

    Article  Google Scholar 

  13. Dai, H.L., Wang, L., Qian, Q., Ni, Q.: Vortex-induced vibrations of pipes conveying fluid in the subcritical and supercritical regimes. J. Fluids Struct. 39, 322–334 (2013)

    Article  Google Scholar 

  14. Dai, H.L., Wang, L., Qian, Q., Ni, Q.: Vortex-induced vibrations of pipes conveying pulsating fluid. Ocean Eng. 77, 12–22 (2014a)

  15. Dai, H.L., Abdelkefi, A., Wang, L.: Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. J. Intell. Mater. Syst. Struct. (2014b). doi:10.1177/1045389X14538329

    Google Scholar 

  16. Dai, H.L., Abdelkefi, A., Wang, L.: Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations. Nonlinear Dyn. 77, 967–981 (2014c)

    Article  MathSciNet  Google Scholar 

  17. Dai, H.L., Abdelkefi, A., Wang, L.: Modeling and nonlinear dynamics of fluid-conveying risers under hybrid excitations. Int. J. Eng. Sci. 81, 1–14 (2014d)

    Article  MathSciNet  Google Scholar 

  18. Walshe, D.E., Wootton, L.R.: Preventing wind-induced oscillations of structures of circular section. P. I. Civ. Eng. 47, 1–24 (1979)

    Article  Google Scholar 

  19. Tumkur, R.K.R., Calderer, R., Masud, A., Bergman, L.A., Pearlstein, A.J., Vakakis, A.F.: Passive suppression of laminar vortex induced vibration of a circular cylinder. ENOC 2011, Rome, Italy, 24–29 July (2011)

  20. Tumkur, R.K.R., Domany, E., Gendelman, O.V., Masud, A., Bergman, L.A., Vakakis, A.F.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. 18, 1916–1930 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Owen, J.C., Bearman, P.W., Szewczyk, A.A.: Passive control of VIV with drag reduction. J. Fluids Struct. 15, 597–605 (2001)

    Article  Google Scholar 

  22. Chen, Z., Zhou, B., Aubry, N.: Control of vortex shedding behind a circular cylinder using electromagnetic forces. Mod. Phys. Lett. B 19, 1627–1630 (2005)

    Article  MATH  Google Scholar 

  23. Akhtar, I., Nayfeh, A.H.: Model based control of laminar wake using fluidic actuators. J. Comput. Nonlinear Dyn. 5, 041015 (2010)

    Article  Google Scholar 

  24. Xu, F., Chen, W.L., Xiao, Y.Q., Li, H., Ou, J.P.: Numerical study on the suppression of the vortex-induced vibration of an elastically mounted cylinder by a traveling wave wall. J. Fluids Struct. 44, 145–165 (2014)

    Article  Google Scholar 

  25. Quadrante, L.A.R., Nishi, Y.: Amplification/suppression of flow-induced motions of an elastically mounted circular cylinder by attaching tripping wires. J. Fluids Struct. 48, 93–102 (2014)

    Article  Google Scholar 

  26. Berger, E.: Suppression of vortex shedding and turbulence behind oscillating cylinders. Phys. Fluids 10, 191–193 (1967)

    Article  Google Scholar 

  27. Baz, A., Ro, J.: Active control of flow-induced vibrations of a flexible cylinder using direct velocity feedback. J. Sound Vib. 146, 33–45 (1991)

    Article  Google Scholar 

  28. Warui, H.M., Fujisawa, N.: Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations. Exp. Fluids 21, 49–56 (1996)

    Article  Google Scholar 

  29. Mehmood, A., Abdelkefi, A., Akhtar, I., Nayfeh, A.H., Nuhait, A., Hajj, M.R.: Linear and nonlinear active feedback controls for vortex-induced vibrations of circular cylinders. J. Vib. Control. doi:10.1177/1077546312469425 (2012)

  30. Blevins, R.D.: The effect of sound on vortex shedding from cylinders. J. Fluids Struct. 161, 217–237 (1985)

    Google Scholar 

  31. Huang, X.Y.: Feedback control of vortex shedding from a circular cylinder. Exp. Fluids 20, 218–224 (1996)

    Article  Google Scholar 

  32. Ning, X.L., Tan, P., Huang, D.Y., Zhou, F.L.: Application of adaptive fuzzy sliding mode control to a seismically excited high way bridge. Struct. Control Health 16, 639–656 (2009)

    Article  Google Scholar 

  33. Hasheminejad, S.M., Rabiee, A.H., Jarrahi, M., Markazi, A.H.D.: Active vortex-induced vibration control of a circular cylinder at low Reynolds numbers using an adaptive fuzzy sliding mode controller. J. Fluids Struct. 50, 49–65 (2014)

    Article  Google Scholar 

  34. Balthazar, J.M., Bassinello, D.G., Tusset, A.M., et al.: Nonlinear control in an electromechanical transducer with chaotic behavior. Meccanica 49(8), 1859–1867 (2014)

    MATH  MathSciNet  Google Scholar 

  35. Nozaki, R., Balthazar, J.M., Tusset, A.M., et al.: Nonlinear control system applied to atomic force microscope including parametric errors. Int. J. Control Autom. 24(3), 223–231 (2013)

    Google Scholar 

  36. Tusset, A.M., Bueno, Á.M., Nascimento, C.B., et al.: Nonlinear state estimation and control for chaos suppression in MEMS resonator. Shock Vib. 20(4), 749–761 (2013)

    Article  Google Scholar 

  37. Masoud, Z., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34, 347–358 (2003)

  38. Masoud, Z., Nayfeh, A.H., Nayfeh, N.A.: Sway reduction on quay-side container cranes using delayed feedback controller: simulations and experiments. J. Vib. Control 11, 1103 (2005)

    Article  MATH  Google Scholar 

  39. Nayfeh, A.H., Nayfeh, N.A.: Time-delay feedback control of lathe cutting tools. J. Vib. Control 18, 1106 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhao, Y.Y., Xu, J.: Effects of delayed feedback control on nonlinear vibration absorber system. J. Sound Vib. 308, 212–230 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wang, L., Liu, W.B., Dai, H.L.: Aeroelastic galloping response of square prisms: the role of time-delayed feedbacks. Int. J. Eng. Sci. 75, 79–84 (2014)

    Article  Google Scholar 

  42. Dai, H.L., Abdelkefi, A., Wang, L., Liu, W.B.: Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks. Nonlinear Dyn. 78, 907–919 (2014)

    Article  MathSciNet  Google Scholar 

  43. Chen, S.S., Zhu, S., Cai, Y.: An unsteady-flow theory for vortex-induced vibration. J. Sound Vib. 184, 73–92 (1995)

    Article  MATH  Google Scholar 

  44. Simiu, E., Scanlan, R.H.: Wind Effects on Structures: Fundamentals and Applications to Design. Wiley-IEEE, New York (1996)

    Google Scholar 

  45. Hartlen, R.T., Currie, I.G.: Lift-oscillator model of vortex-induced vibration. J. Eng. Mech. 69, 577–591 (1970)

    Google Scholar 

  46. Skop, R.A., Balasubramanian, S.: A new twist on an old model for vortex-excited vibrations. J. Fluids Struct. 11, 395–412 (1997)

    Article  Google Scholar 

  47. Facchinetti, M.L., de Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19, 123–140 (2004)

    Article  Google Scholar 

  48. Violette, R., de Langre, E., Szydlowski, J.: Computation of vortex-induced vibrations of long structures using a wake oscillator model: comparison with DNS and experiments. Comput. Struct. 85, 1134–1141 (2007)

    Article  Google Scholar 

  49. Keber, M., Wiercigroch, M.: Dynamics of a vertical riser with weak structural nonlinearity excited by wakes. J. Sound Vib. 315, 685–699 (2008)

    Article  Google Scholar 

  50. Srinil, N., Zanganeh, H.: Modeling of coupled cross-flow/in-line vortex-induced vibrations using double Duffing and van der Pol oscillators. Ocean Eng. 53, 83–97 (2012)

    Article  Google Scholar 

  51. Blevins, R.D.: Flow-Induced Vibrations. Van Nostrand Reinhold, New York (1990)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support provided by the Program for New Century Excellent Talents in University of China (NCET-11-0183), the Natural Science Foundation of Hubei Province (2013CFA130, 2014CFA124), and the Fundamental Research Funds for the Central Universities, HUST (2013TS034, 2014YQ007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H.L., Abdelkefi, A., Wang, L. et al. Time-delay feedback controller for amplitude reduction in vortex-induced vibrations. Nonlinear Dyn 80, 59–70 (2015). https://doi.org/10.1007/s11071-014-1851-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1851-x

Keywords

Navigation