Skip to main content
Log in

A comparative study of bioeconomic ratio-dependent predator–prey model with and without additional food to predators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present two models which incorporate prey harvesting to the classical and a modified ratio-dependent predator–prey model with additional food supply to the predators. We analyze the existence and stability of the equilibrium points of both the models and determine the maximum sustainable harvesting effort. The optimal harvesting policy is determined by using Pontryagin’s maximum principle. The results obtained are numerically illustrated. We examine the consequences of providing additional food (as a part of the total harvest effort) to predators in prey harvesting. Our study shows that the system can sustain a much improved optimal prey harvesting rate with additional food supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  2. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5), 293–320 (1959)

    Article  Google Scholar 

  3. Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97(S45), 5–60 (1965)

    Google Scholar 

  4. Holling, C.S.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 98(S48), 5–86 (1966)

    Google Scholar 

  5. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139(3), 311–326 (1989)

    Article  Google Scholar 

  6. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36(4), 389–406 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator–prey system. J. Math. Biol. 43(3), 268–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61(1), 19–32 (1999)

    Article  Google Scholar 

  9. Ji, C., Jiang, D., Li, X.: Qualitative analysis of a stochastic ratio-dependent predator–prey system. J. Comput. Appl. Math. 235(5), 1326–1341 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217(17), 7265–7281 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Song, Y., Zou, X.: Bifurcation analysis of a diffusive ratio-dependent predator–prey model. Nonlinear. Dyn. (2014). doi:10.1007/s11071-014-1421-2

  12. Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)

    MATH  Google Scholar 

  13. Goh, B.S.: Management and Analysis of Biological Populations. Elsevier, Amsterdam (1980)

    Google Scholar 

  14. Srinivasu, P.D.N.: Bioeconomics of a renewable resource in presence of a predator. Nonlinear Anal-Real 2(4), 497–506 (2001)

  15. Hoekstra, J., van den Bergh, J.C.J.M.: Harvesting and conservation in a predator–prey system. J. Econ. Dyn. Control. 29(6), 1097–1120 (2005)

    Article  MATH  Google Scholar 

  16. Xiao, D., Jennings, L.S.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65(3), 737–753 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lenzini, P., Rebaza, J.: Nonconstant predator harvesting on ratio-dependent predator–prey models. Appl. Math. Sci. 4(16), 791–803 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Kar, T.K., Ghosh, B.: Sustainability and optimal control of an exploited prey–predator system through provision of alternative food to predator. Biosystems 109(2), 220–232 (2012)

    Article  Google Scholar 

  19. Lv, Y., Yuan, R., Pei, Y.: A prey-predator model with harvesting for fishery resource with reserve area. Appl. Math. Model. 37(5), 3048–3062 (2013)

    Article  MathSciNet  Google Scholar 

  20. Jana, S., Kar, T.K.: A mathematical study of a prey–predator model in relevance to pest control. Nonlinear Dyn. 74(3), 667–683 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sharma, S., Samanta, G.P.: Optimal harvesting of a two species competition model with imprecise biological parameters. Nonlinear Dyn. 77(4), 1101–1119 (2014)

    Article  MathSciNet  Google Scholar 

  22. Srinivasu, P.D.N., Prasad, B.S.R.V., Venkatesulu, M.: Biological control through provision of additional food to predators: a theoretical study. Theor. Popul. Biol. 72(1), 111–120 (2007)

    Article  MATH  Google Scholar 

  23. van Baalen, M., Krivan, V., van Rijn, P.C.J., Sabelis, M.W.: Alternative food, switching predators, and the persistence of predator–prey systems. Am. Nat. 157(5), 512–524 (2001)

    Article  Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (2001)

    MATH  Google Scholar 

  25. Chiang, A.C.: Elements of Dynamic Optimization. McGraw-Hill, New York (1992)

    Google Scholar 

  26. Chaudhuri, K.: Dynamic optimization of combined harvesting of a two-species fishery. Ecol. Model. 41(1–2), 17–25 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

The first author is grateful to the Indian Institute of Technology Guwahati for the financial support provided to pursue his Ph.D. The authors express their gratitude to both the learned reviewers for their suggestions, which resulted in an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha P. Chakrabarty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Chakrabarty, S.P. A comparative study of bioeconomic ratio-dependent predator–prey model with and without additional food to predators. Nonlinear Dyn 80, 23–38 (2015). https://doi.org/10.1007/s11071-014-1848-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1848-5

Keywords

Navigation