Skip to main content
Log in

Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new quaternion-based nonlinear robust output feedback tracking controller is developed to address the attitude and altitude tracking problem of a quadrotor unmanned aerial vehicle which is subject to structural uncertainties and unknown external disturbances. By using the unit quaternion representation, the singularity associated with orientation representations can be avoided. A set of non-model-based filters are introduced to provide estimations for the unmeasurable angular velocities and translational velocity in the altitude direction of the quadrotor in the case that velocity feedback is unavailable. Approximation components based on neural network (NN) are introduced to estimate the modeling uncertainties, and robust feedback components are designed to compensate for external disturbances and NN reconstruction errors. The Lyapunov-based stability analysis is employed to prove that a semiglobally asymptotic tracking result is achieved and all the closed-loop states remain bounded. Numerical simulation results are provided to illustrate the good tracking performance of the proposed control methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. How, J.P., Bethke, B., Frank, A., Dale, D., Vian, J.: Real time indoor autonomous vehicle test environment. IEEE Control Syst. Mag. 28(2), L51–64 (2008)

    Article  MathSciNet  Google Scholar 

  2. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.L.: Adaptive control of quadrotor UAVs in the presence of actuator uncertainties. In: Proceedings of the 2010 AIAA Infotech@Aerospace, Atlanta, Georgia, USA, AIAA 2010, p. 3416 (2010)

  3. Bouabdallah, S.A., Noth, A., Siegwart, R.: PID vs LQ controltechniques applied to an indoor micro quadrotor. In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal, Japan, pp. 2451–2456 (2004)

  4. Kendoul, F., Yu, Z., Nonami, K.: Guidance and nonlinear control system for autonomous flight of minirotorcraft unmanned aerial vehicles. J. Field Robot. 27(3), 311–334 (2010)

    Google Scholar 

  5. Mellinger, D., Shomin, M., Kumar, V.: Control of quadrotors for robust perching and landing. In: Proceedings of the 2010 International Powered Lift Conference, Philadelphia, PA, USA, pp. 1203–1225 (2010)

  6. Colrado, J., Barrientos, A., Martinez, A., Lafaverges, B., Valente, J.: Mini-quadrotor attitude control based on hybrid backstepping and Frenet–Serret theory. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, pp. 1617–1622 (2010)

  7. Dikmen, I.C., Arisoy, A., Temeltas, H.: Attitude control of a quadrotor. In: Proceedings of the 4th International Conference on Recent Advances in Space Technologies, pp. 722–727 (2009)

  8. Fernando, T., Chandiramani, J., Lee, T., Gutierrez, H.: Robust adaptive geometric tracking controls on SO(3) with an application to the attitude dynamics of a quadrotor UAV. In: Proceedings of the 2011 IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, pp. 7380–7385 (2011)

  9. Zeng, W., Xian, B., Diao, C., Yin, Q., Li, H.T., Yang, Y.G.: Nonlinear adaptive regulation control of a quadrotor unmanned aerial vehicle. In: Proceedings of the 2011 IEEE Multi-Conference on Systems and Control, Denver, CO, USA, pp. 133–138 (2011)

  10. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Article  Google Scholar 

  11. Xu, R., Ozguner, U.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, R., Quan, Q., Cai, K.Y.: Attitude control of a quadrotor aircraft subject to a class of time-varying disturbances. IET Control Theory Appl. 5(9), 1140–1146 (2011)

    Article  MathSciNet  Google Scholar 

  13. Bouchoucha, M., Seghour, S., Tadjine, M.: Classical and second order sliding mode control solution to an attitude stabilization of a four rotors helicopter: from theory to experiment. In: Proceedings of the 2011 IEEE International Conference on Mechatronics, Istanbul, Turkey, pp. 162–169 (2011)

  14. Gonzalez, I., Salazar, S., Lozano, R., Escareno, J.: Real-time altitude robust controller for a quad-rotor aircraft using sliding-mode control technique. In: Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, GA, USA, pp. 650–659 (2013)

  15. Tony, C.T., Mackunisy, W.: Robust attitude tracking control of a quadrotor helicopter in the presence of uncertainty. In: Proceedings of the 2012 IEEE Conference on Decision and Control, Daytona Beach, Maui, Hawaii, USA, pp. 937–942 (2012)

  16. Liu, H., Bai, Y.Q., Lu, G., Zhong, Y.S.: Robust attitude control of uncertain quadrotors. IET Control Theory Appl. 7(11), 1583–1589 (2013)

    Article  MathSciNet  Google Scholar 

  17. Bialy, B.J., Klotz, J., Brink, K., Dixon, W.E.: Lyapunov-based robust adaptive control of a quadrotor UAV in the presence of modeling uncertainties. In: Proceedings of the 2013 American Control Conference, Washington, DC, USA, pp. 13–18 (2013)

  18. Guerrero-Castellanos, J.F., Marchand, N., Hably, A., Lesecq, S., Delamare, J.: Bounded attitude control of rigid bodies: real-time experimentation to a quadrotor mini-helicopter. Control Eng. Pract. 11(8), 790–797 (2011)

    Article  Google Scholar 

  19. Sun, N., Fang, Y.C., Zhang, X.B.: Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica 49(5), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  20. Madani, T., Benallegue, A.: Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 5887–5892 (2007)

  21. Dierks, T., Jagannathan, S.: Output feedback control of a quadrotor UAV using neural networks. IEEE Trans. Neural Netw. 21(1), 50–66 (2010)

    Article  Google Scholar 

  22. Lee, D.B., Burg, T., Xian, B., Dawson, D.M.: Output feedback tracking control of an underactuated quad-rotor UAV. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 1775–1780 (2007)

  23. Benzemrane, K., Santosuosso, G.L., Damm, G.: Unmanned Aerial Vehicle Speed Estimation via Nonlinear Adaptive Observers. In: Proceedings of the 2007 American Control Conference, New York City, USA, pp. 985–990 (2007)

  24. Liao, F., Lum, K.Y., Wang, J.L.: Flight control of VTOL quadrotor aircraft via output feedback. In: Proceedings of the 2010 AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, AIAA 2010, p. 808 (2010)

  25. Diao, C., Xian, B., Zhao, B., Zhang, X., Liu, S.B.: An output feedback attitude tracking controller design for quadrotor unmanned aerial vehicles using quaternion. In: Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 3051–3056 (2013)

  26. Hughes, P.C.: Spacecraft Attitude Dynamics. Wiley, New York (1994)

  27. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  28. Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. MacMillan Publishing Co., New York (1993)

    Google Scholar 

  29. Lizarralde, F., Wen, J.T.: Attitude control without angular velocity measurement: a passivity approach. IEEE Trans. Autom. Control 41(3), 468–472 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dawson, D.M., Hu, J., Burg, T.C.: Nonlinear Control of Electric Machinery. Marcel Dekker, New York (1998)

    Google Scholar 

  31. Costic, B.T., Dawson, M., de Queiroz, M.S., Kapila, V.: Quaternion-based adaptive attitude tracking controller without velocity measurements. J. Guid. Control Dyn. 24(6), 1214–1222 (2001)

    Article  Google Scholar 

  32. Xian, B., de Queiroz, M.S., Dawson, D.M., McIntyre, M.L.: A discountinuous output feedback controller and velocity observer for nonlinear mechanical system. Automatica 40(4), 695–700 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Khalil, H.: Nonlinear System. Prentice-Hall, New Jersey (2002)

    Google Scholar 

  34. Serrani, A., Isidori, A., Marconi, L.: Semiglobal nonlinear output regulation with adaptive internal model. IEEE Trans. Autom. Control 46(8), 1178–1194 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Tianjin (Grants No. 14JCZDJC31900), and National Natural Science Foundation of China (Grants Nos. 90916004, 60804004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xian.

Appendix

Appendix

1.1 Proof of Lemma 1

Based on (29) and (30), the auxiliary signal \(\eta (t)\) can be rewritten as

$$\begin{aligned} \eta =\dot{\mu }+\mu \end{aligned}$$
(95)

where \(\mu =e_{v}+e_{f}\). After substituting (95) into (47), it can be obtained that

$$\begin{aligned} \int _{0}^{t}L_{1}(s)\hbox {d}s&= \int _{0}^{t}\mu ^{T}(\bar{\tau }_{d}-K_{1}\hbox {sgn}(s))\hbox {d}s\nonumber \\&\quad +\,\int _{0}^{t}\dot{\mu }^{T}\bar{\tau }_{d}\hbox {d}s-\int _{0}^{t}\dot{\mu }^{T}K_{1} \hbox {sgn}(s)\hbox {d}s\text {.}\nonumber \\ \end{aligned}$$
(96)

After integrating the second and third integrals in (96) by parts, it can be obtained that

$$\begin{aligned} \int _{0}^{t}L_{1}(s)\hbox {d}s&= \int _{0}^{t}\left( \mu ^{T}\bar{\tau }_{d}-\frac{d\bar{\tau }_{d}}{\hbox {d}s}-K_{1}\hbox {sgn}(\mu )\right) \hbox {d}s\nonumber \\&\quad +\,\mu ^{T}\bar{\tau }_{d}-\mu ^{T}(0)\bar{\tau }_{d}(0)- {\sum \limits _{i=1}^{3}} K_{1i}\left| \mu _{i}\right| \nonumber \\&\quad +\,{\sum \limits _{i=1}^{3}} K_{1i}\left| e_{vi}(0)\right| \text {.} \end{aligned}$$
(97)

The right side of (97) can be upper bounded by

$$\begin{aligned} \int _{0}^{t}L_{1}(s)\hbox {d}s&\le \int _{0}^{t} {\sum \limits _{i=1}^{3}} \left| \mu _{i}\right| \left( \left| \bar{\tau }_{di}\right| +\left| \frac{d\bar{\tau }_{di}}{\hbox {d}s}\right| -K_{1i}\!\right) \hbox {d}s\nonumber \\&\quad +\,{\sum \limits _{i=1}^{3}} \left| \mu _{i}\right| (\left| \bar{\tau }_{di}\right| -K_{1i})\nonumber \\&\quad +\,{\sum \limits _{i=1}^{3}} K_{1i}\left| e_{vi}(0)\right| -\mu ^{T}(0)D_{1}^{\prime }(0)\text {.} \end{aligned}$$
(98)

If the control gain matrix \(K_{1}\) satisfies the condition in (46), the result in Lemma 1 can be proved. \(\square \)

1.2 Proof of Theorem 2

Let the auxiliary function \(Q_{z}(t)\in {\mathbb {R}}\) be defined as follows

$$\begin{aligned} Q_{z}=\zeta _{bz}-\int _{0}^{t}L_{z}(s)\hbox {d}s \end{aligned}$$
(99)

where the \(\zeta _{bz}\) and \(L_{z}(t)\) have been introduced in Lemma 2. To prove the above theorem, an nonnegative function \(V_{z}(t)\in {\mathbb {R}}\) is defined as follows

$$\begin{aligned} V_{2}=\frac{1}{2}m\eta _{z}^{2}+\frac{1}{2}e_{fz}^{T}+\frac{1}{2}e_{z} ^{2}+\frac{1}{2}r_{fz}^{2}+Q_{z}. \end{aligned}$$
(100)

Note that the function \(V_{z}(t)\) can be bounded as

$$\begin{aligned} \lambda _{3}\left\| y_{z}\right\| ^{2}\le V_{2}\le \lambda _{4}\left\| y_{z}\right\| ^{2} \end{aligned}$$
(101)

where \(y_{z}=\left[ \begin{array}{cc} z_{h}^{T}&\sqrt{Q_{z}} \end{array} \right] ^{T}\in {\mathbb {R}}^{5}\), and \(\lambda _{3}\), \(\lambda _{4}\in {\mathbb {R}}\) are defined as

$$\begin{aligned} \begin{array}{cc} \lambda _{3}=\frac{1}{2}\min (1,m)&\lambda _{4}=\max (\frac{1}{2}m,1) \end{array} \text {.} \end{aligned}$$
(102)

After taking the time derivative of (100), and substituting (70), (71), (72), (80), and (99) into the resulting equation, the following expression can be obtained

$$\begin{aligned} \dot{V}_{2}&=-e_{fz}^{2}-e_{z}^{2}-r_{fz}^{2}-k_{2z}m\eta _{z}^{2}+\eta _{z}\tilde{N}_{z}\nonumber \\&=-\left\| z_{z}\right\| ^{2}+(1-k_{2z}m)\eta _{z}^{2}+\eta _{z}\tilde{N}_{z} \end{aligned}$$
(103)

upon the use of the definition of \(z_{h}(t)\). After applying (78) to (103), it can be obtained

$$\begin{aligned} \dot{V}_{2}&\le -\left\| z_{z}\right\| ^{2}+\left[ \left\| \eta _{z}\right\| \rho _{z}(\left\| z_{z}\right\| )-k_{nz}\left\| \eta _{z}\right\| ^{2}\right] \nonumber \\&\le -\left( 1-\frac{\rho _{z}^{2}(\left\| z_{h}\right\| )}{4k_{nz} }\right) \left\| z_{z}\right\| ^{2} \end{aligned}$$
(104)

where \(k_{nz}\in {\mathbb {R}}\) is a constant and satisfies the following inequality

$$\begin{aligned} k_{nz}<k_{2z}m-1. \end{aligned}$$
(105)

The inequality in (105) implies that

$$\begin{aligned} k_{2z}>\frac{1}{m}(k_{nz}+1). \end{aligned}$$
(106)

From (104), it can be obtained that

$$\begin{aligned} \dot{V}_{2}\le -\gamma _{z}\left\| z_{z}\right\| ^{2}\text { for } k_{nz}>\frac{1}{4}\rho _{z}^{2}(\left\| z_{z}\right\| ) \end{aligned}$$
(107)

where \(\gamma _{z}\) is some positive constant. The attract region \(\mathcal {G}\) can be determined similarly as the one in Theorem 1. It should be noted that even though the selection of \(k_{nz}\) in (107) is related with the state \(z_{z}(t)\), but it can be transfer to the following sufficient condition

$$\begin{aligned} k_{nz}>\frac{1}{4}\rho _{z}^{2}\left( \sqrt{\frac{\lambda _{1z}}{\lambda _{2z}} }\left\| y_{z}(0)\right\| \right) \end{aligned}$$
(108)

and the initial value \(\vert y_{z}(0)\vert \) is set as

$$\begin{aligned} \left| y_{z}(0)\right| \!=\!\sqrt{\left| e_{z}^{2}(0)\right| \!+\!\left| \eta _{z}^{2}(0)\right| \!+\!k_{1z}\left| e_{z}(0)\right| \!-\!e_{z}(0)N_{zd}(0)}.\nonumber \\ \end{aligned}$$
(109)

The condition in (108) which is only dependent on the system’s initial value can be obtained by following the similar steps in the proof of Theorem 1. By utilizing (107) and following the similar steps in the proof of Theorem 1, it can be proved that all the closed-loop signals remain bounded and the attitude tracking is achieved, provided the control gains being selected to satisfy (84), (106), (108), and (102). \(\blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, B., Diao, C., Zhao, B. et al. Nonlinear robust output feedback tracking control of a quadrotor UAV using quaternion representation. Nonlinear Dyn 79, 2735–2752 (2015). https://doi.org/10.1007/s11071-014-1843-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1843-x

Keywords

Navigation