Skip to main content
Log in

A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Design of adaptive infinite impulse response (IIR) filter is the process of utilizing adaptive algorithm to iteratively determine the filter parameters to obtain an optimal model for the unknown plant based on minimizing the error cost function. However, the error cost surface of IIR filter is generally nonlinear, non-differentiable and multimodal. Hence, an efficient global optimization technique is required to minimize the error cost objective. A novel hybrid particle swarm optimization and gravitational search algorithm (HPSO–GSA) is proposed in this paper for IIR filter design. The proposed HPSO–GSA updates particle positions through obeying the influence of gravity acceleration in GSA and receiving direction of cognitive memory and social sharing information from PSO by means of coevolutionary strategy. The effect of key parameters on the performance of the proposed algorithm is firstly studied, and the proper parameters in HPSO–GSA are established using five benchmark plants along with the same-order model. The simulation studies have been performed for the performance comparison of eight algorithms such as PSO, GSA, QPSO, DPSO, FO-DPSO, GAPSO, PSOGSA and the proposed HPSO–GSA for unknown IIR system identification with the same-order and reduced-order filters. Simulation results show that the proposed algorithm has advantages over PSO, GSA and other PSO-based variants in terms of the convergence speed and the MSE levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Merkle, D., Middendorf, M.: Swarm intelligence and signal processing. IEEE Signal Process. Mag. 25(6), 152–158 (2008)

    Article  Google Scholar 

  2. Su, K., Cai, H.P.: A modified SQP-filter method for nonlinear complementarily problem. Appl. Math. Model. 33(6), 2890–2896 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Lin, J., Chen, C.: Parameter estimation of chaotic systems by an oppositional seeker optimization algorithm. Nonlinear Dyn. 76(1), 509–517 (2014)

    Article  Google Scholar 

  4. Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Zhang, R.D., Lu, R.Q., Xue, A.K., Gao, F.R.: Predictive functional control for linear systems under partial actuator faults and application on an injection molding batch process. Ind. Eng. Chem. Res. 53(2), 723–731 (2014)

    Article  Google Scholar 

  6. Shynk, J.J.: Adaptive IIR filtering. IEEE ASSP Mag. 6(2), 4–21 (1989)

    Article  Google Scholar 

  7. Astrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1995)

    Google Scholar 

  8. Hu, H., Ding, R.: Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model. Nonlinear Dyn. 76(1), 777–784 (2014)

    Article  MathSciNet  Google Scholar 

  9. Regalia, P.A.: Stable and efficient lattice algorithms for adaptive IIR filtering. IEEE Trans. Signal Process. 40(2), 375–388 (1992)

    Article  Google Scholar 

  10. Krusienski, D.J., Jenkins, W.K.: Design and performance of adaptive systems based on structured stochastic optimization strategies. IEEE Circuits Syst. Mag. 5(1), 8–20 (2005)

    Article  Google Scholar 

  11. Shynk, J.J.: Adaptive IIR filtering using parallel-form realizations. IEEE Trans. Acoust. Speech Signal Process. 37(4), 519–533 (1989)

    Article  Google Scholar 

  12. Karaboga, N., Kalini, A., Karaboga, D.: Designing digital IIR filters using ant colony optimization algorithm. Eng. Appl. Artif. Intell. 17(3), 301–309 (2004)

    Article  Google Scholar 

  13. Niknam, T., Khooban, M.H., Kavousifard, A., Soltanpour, M.R.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75(1–2), 73–83 (2014)

    Article  MathSciNet  Google Scholar 

  14. Zhang, R.D., Zou, H.B., Xue, A.K., Gao, F.R.: GA based predictive functional control for batch processes under actuator faults. Chemometr. Intell. Lab. Syst. 137, 67–73 (2014)

    Article  MATH  Google Scholar 

  15. Yao, L., Sethares, W.A.: Nonlinear parameter estimation via the genetic algorithm. IEEE Trans. Signal Process. 42(4), 927–935 (1994)

    Article  Google Scholar 

  16. Ma, Q., Cowan, C.F.N.: Genetic algorithms applied to the adaptation of IIR filters. Signal Process. 48(2), 155–163 (1996)

    Article  MATH  Google Scholar 

  17. Ng, S.C., Leung, S.H., Chung, C.Y., Luk, A., Lau, W.H.: The genetic search approach: a new learning algorithm for adaptive IIR filtering. IEEE Signal Process. Mag. 13(6), 38–46 (1996)

    Article  Google Scholar 

  18. Masahide, A.B.E., Kawamata, M.: Evolutionary digital filtering for IIR adaptive digital filters based on the cloning and mating reproduction. IEICE Trans. Fundam. Electr. Commun. Comput. Sci. 81(3), 398–406 (1998)

    Google Scholar 

  19. Mostajabi, T., Poshtan, J., Mostajabi, Z.: IIR model identification via evolutionary algorithms. Artif. Intell. Rev. 39, 1–15 (2013)

  20. Pires, E.S., Machado, J.T., de Moura Oliveira, P.B., Cunha, J.B., Mendes, L.: Particle swarm optimization with fractional-order velocity. Nonlinear Dyn. 61(1–2), 295–301 (2010)

    Article  MATH  Google Scholar 

  21. Karaboga, N.: A new design method based on artificial bee colony algorithm for digital IIR filters. J. Frankl. Inst. 346(4), 328–348 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Karaboga, N., Cetinkaya, M.B.: A novel and efficient algorithm for adaptive filtering: artificial bee colony algorithm. Turk. J. Electr. Eng. Comput. Sci. 19(1), 175–190 (2011)

  23. Dai, C., Chen, W., Zhu, Y.: Seeker optimization algorithm for digital IIR filter design. IEEE Trans. Ind. Electron. 57(5), 1710–1718 (2010)

    Article  Google Scholar 

  24. Panda, G., Pradhan, P.M., Majhi, B.: IIR system identification using cat swarm optimization. Expert Syst. Appl. 38(10), 12671–12683 (2011)

    Article  Google Scholar 

  25. Saha, S.K., Kar, R., Mandal, D., Ghoshal, S.P.: A new design method using opposition-based BAT algorithm for IIR system identification problem. Int. J. Bio-Inspired Comput. 5(2), 99–132 (2013)

    Article  Google Scholar 

  26. Kalinli, A., Karaboga, N.: Artificial immune algorithm for IIR filter design. Eng. Appl. Artif. Intell. 18(8), 919–929 (2005)

    Article  Google Scholar 

  27. Karaboga, N.: Digital IIR filter design using differential evolution algorithm. EURASIP J. Appl. Signal Process. 8, 1269–1276 (2005)

  28. Mandal, S., Ghoshal, S.P., Kar, R., Mandal, D.: Differential evolution with wavelet mutation in digital FIR filter design. J. Optim. Theory Appl. 155(1), 315–324 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

    Article  Google Scholar 

  30. Karaboga, N., Kalinli, A., Karaboga, D.: Designing digital IIR filters using ant colony optimisation algorithm. Eng. Appl. Artif. Intell. 17(3), 301–309 (2004)

    Article  Google Scholar 

  31. Hlaing, Z.C.S.S., Khine, M.A.: Solving traveling salesman problem by using improved ant colony optimization algorithm. Int. J. Inf. Educ. Technol. 1(5), 404–409 (2011)

    Article  Google Scholar 

  32. Eberhart, R.C., Shi, Y.: Comparison Between Genetic Algorithms and Particle Swarm Optimization. Evolutionary Programming VII. Springer, Berlin (1998)

    Google Scholar 

  33. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publisher, San Francisco (2001)

    Google Scholar 

  34. Chen, S., Luk, B.L.: Digital IIR filter design using particle swarm optimisation. Int. J. Model. Identif. Control 9(4), 327–335 (2010)

    Article  Google Scholar 

  35. Das, S., Konar, A.: A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Eng. Appl. Artif. Intell. 20(8), 1086–1096 (2007)

    Article  Google Scholar 

  36. Fang, W., Sun, J., Xu, W.B.: A new mutated quantum-behaved particle swarm optimizer for digital IIR filter design. EURASIP J. Adv. Signal Process. Article ID 367465, 1–7 (2009)

  37. Luitel, B., Venayagamoorthy, G.K.: Particle swarm optimization with quantum infusion for system identification. Eng. Appl. Artif. Intell. 23(5), 635–649 (2010)

    Article  Google Scholar 

  38. Sun, J., Fang, W., Xu, W.: A quantum-behaved particle swarm optimization with diversity-guided mutation for the design of two-dimensional IIR digital filters. IEEE Trans. Circuits Syst. II: Express Briefs 57(2), 141–145 (2010)

    Article  Google Scholar 

  39. Yu, X., Liu, J., Li, H.: An adaptive inertia weight particle swarm optimization algorithm for IIR digital filter. In: IEEE International Conference on Artificial Intelligence and Computational Intelligence 1, pp. 114–118 (2009)

  40. Saha, S.K., Mandal, D., Kar, R., Saha, M., Ghoshal, S.P.: IIR system identification using Particle Swarm Optimization with Improved Inertia Weight approach. In: IEEE International Conference on Emerging Applications of Information Technology, pp. 1–4 (2012)

  41. Majhi, B., Panda, G.: Development of efficient identification scheme for nonlinear dynamic systems using swarm intelligence techniques. Expert Syst. Appl. 37(1), 556–566 (2010)

    Article  Google Scholar 

  42. Tillett, J., Rao, T., Sahin, F., Rao, R.: Darwinian particle swarm optimization. In: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, pp. 1474–1487 (2005)

  43. Couceiro, M.S., Rocha, R.P., Ferreira, N.F., Machado, J.T.: Introducing the fractional-order Darwinian PSO. Signal Image Video Process 6(3), 343–350 (2012)

    Article  Google Scholar 

  44. Beheshti, Z., Hj Shamsuddin, S.M.: CAPSO: centripetal accelerated particle swarm optimization. Inf. Sci. 258, 54–79 (2014)

    Article  Google Scholar 

  45. Chahkandi, V., Yaghoobi, M., Veisi, G.: CABC-CSA: a new chaotic hybrid algorithm for solving optimization problems. Nonlinear Dyn. 73(1–2), 475–484 (2013)

    Article  MathSciNet  Google Scholar 

  46. Huang, C.L., Huang, W.C., Chang, H.Y., Yeh, Y.C., Tsai, C.Y.: Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering. Appl. Soft Comput. 13(9), 3864–3872 (2013)

    Article  Google Scholar 

  47. Abd-El-Wahed, W.F., Mousa, A.A., El-Shorbagy, M.A.: Integrating particle swarm optimization with genetic algorithms for solving nonlinear optimization problems. J. Comput. Appl. Math. 235(5), 1446–1453 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Mousa, A.A., El-Shorbagy, M.A., Abd-El-Wahed, W.F.: Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol. Comput. 3, 1–14 (2012)

    Article  Google Scholar 

  49. Mirjalili, S., Hashim, S.Z.M.: A new hybrid PSOGSA algorithm for function optimization. In: Proceeding of the IEEE International Conference on Computer and Information Application, pp. 374–377 (2010)

  50. Mirjalili, S., Hashim, S.Z.M., Moradian, S.H.: Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl. Math. Comput. 218(22), 11125–11137 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  51. Jiang, S.H., Ji, Z.C., Shen, Y.X.: A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints. Int. J. Elect. Power Energy Syst. 55, 628–644 (2014)

    Article  Google Scholar 

  52. Eberhart R.C., Kennedy J.: A new optimizer using particles swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

  53. Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, application and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, pp. 81–86 (2001)

  54. Gao, Z., Liao, X.: Rational approximation for fractional-order system by particle swarm optimization. Nonlinear Dyn. 67(2), 1387–1395 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  55. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  56. Green, R.C., Wang, L., Alam, M.: Training neural networks using central force optimization and particle swarm optimization: insights and comparisons. Expert Syst. Appl. 39(1), 555–563 (2012)

    Article  Google Scholar 

  57. Zhang, Y., Gong, D.W., Ding, Z.H.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61174032 and 61202473, the National High Technology Research and Development Program of China (863 Program) under Grant No. 2013AA040405, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20110093130001, the Key Natural Science Research Project of Anhui Province of China under Grant No. KJ2011Z232 and the Fundamental Research Funds for the Central Universities under Grant No. JUDCF13041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Wang, Y. & Ji, Z. A new design method for adaptive IIR system identification using hybrid particle swarm optimization and gravitational search algorithm. Nonlinear Dyn 79, 2553–2576 (2015). https://doi.org/10.1007/s11071-014-1832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1832-0

Keywords

Navigation