Advertisement

Nonlinear Dynamics

, Volume 79, Issue 4, pp 2449–2456 | Cite as

A novel image encryption scheme using chaos and Langton’s Ant cellular automaton

  • Xingyuan WangEmail author
  • Dahai XuEmail author
Original Paper

Abstract

The paper tries to give a new scheme for image encryption, which innovatively introduced the idea of Langton’s Ant cellular automaton to scramble the image. We virtualize a chessboard with the size of the image, and let the ant crawls on it by following the rules which Langton gives and steps generated by intertwining logistic map, then to determine the position of the plain image’s pixels in the scrambling image according to the position which the ant stay each time. Lastly, the PWLCM chaos map has been used to diffuse the image. Experimental results and security analysis show that our scheme is secure and can be used in image encryption and transmission.

Keywords

Image encryption Langton’s Ant Cellular automaton Intertwining logistic map PWLCM 

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Nos. 61370145, 61173183, and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (No. 20070141014), Program for Liaoning Excellent Talents in University (No. LR2012003), the National Natural Science Foundation of Liaoning province (No. 20082165) and the Fundamental Research Funds for the Central Universities (No. DUT12JB06).

References

  1. 1.
    Xiao, H.J., Qiu, S.S., Deng, C.L.: Image encryption scheme based on AES and chaotic series encryption. Comput. Eng. 33(23), 154–155 (2007)Google Scholar
  2. 2.
    Alfalou, A., Brosseau, C.: Optical image compression and encryption methods. Adv. Opt. Photonics 1(3), 589–636 (2009)CrossRefGoogle Scholar
  3. 3.
    Maniccam, S.S., Bourbakis, N.G.: Lossless image compression and encryption using SCAN. Pattern Recognit. 34(6), 1229–1245 (2007)CrossRefGoogle Scholar
  4. 4.
    Yang, H.Q., Liao, X.F., Wong, K.W.: SPIHT-based joint image compression and encryption. Acta Phys. Sin. 61(4), 040505 (2012)Google Scholar
  5. 5.
    Zhu, H.G., Zhao, C., Zhang, X.D.: A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem. Signal Process. Image Commun. 28(6), 670–680 (2013)Google Scholar
  6. 6.
    Kanso, A., Ghebleh, M.: A novel image encryption algorithm based on a 3D chaotic map. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2943–2959 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Gao, T.G., Chen, Z.Q.: A new image encryption algorithm based on hyper-chaos. Phys. Lett. A 372(4), 394–400 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Patidar, V., Pareek, N.K., Sud, K.K.: A new substitution diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3056–3075 (2009)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Sun, F.Y., Liu, S.T., Li, Z.Q.: A novel image encryption scheme based on spatial chaos map. Chaos Solitons Fractals 38(3), 631–640 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Singh, N., Sinha, A.: Optical image encryption using fractional Fourier transform and chaos. Opt. Lasers Eng. 46(2), 117–123 (2008)CrossRefGoogle Scholar
  11. 11.
    Wang, J., Jiang, G.P.: Cryptanalysis of a hyper-chaotic image encryption algorithm and its improved version. Acta Phys. Sin. 60(6), 060503 (2011)zbMATHGoogle Scholar
  12. 12.
    Wang, X.Y., He, G.X.: Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos. Chin. Phys. B 21(6), 060502 (2012)CrossRefGoogle Scholar
  13. 13.
    Liu, J.M., Qiu, S.S., Liu, W.P.: Cryptanalysis of image encryption algorithm based on hyper-chaotic system. Appl. Res. Comput. 27(3), 1042–1044 (2010)Google Scholar
  14. 14.
    Ozkaynak, F., Ozer, A.B., Yavuz, S.: Cryptanalysis of a novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285(24), 4946–4948 (2012)CrossRefGoogle Scholar
  15. 15.
    Li, C.Q., Zhang, D., Chen, G.R.: Cryptanalysis of an image encryption scheme based on the Hill Cipher. J. Zhejiang Univ. Sci. A 9(8), 1118–1123 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Wang, X.Y., Liu, L.T.: Cryptanalysis of a parallel sub-image encryption method with high-dimensional chaos. Nonlinear Dyn. 73(1–2), 795–800 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
    Shatheesh, S.I., Devaraj, P., Bhuvaneswaran, R.S.: An intertwining chaotic maps based image encryption scheme. Nonlinear Dyn. 69(4), 1995–2007 (2012)CrossRefGoogle Scholar
  20. 20.
    Huang, X.L., Ye, G.D.: An efficient self-adaptive model for chaotic image encryption algorithm. Commun. Nonlinear Sci. Numer. Simul. 19(12), 4094–4104 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhu, H.G., Zhao, C.: A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem. Signal Proces. Image Commun. 28(6), 670–680 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Zhang, X.P., Zhao, Z.M.: Chaos-based image encryption with total shuffling and bidirectional diffusion. Nonlinear Dyn. 75(1–2), 319–330 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations