Skip to main content
Log in

A set of ordinary differential equations of motion for constrained mechanical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new theoretical approach is presented for deriving an appropriate set of equations of motion for a class of mechanical systems subjected to motion constraints. This approach is facilitated by employing some fundamental concepts of differential geometry and can treat both holonomic and nonholonomic constraints simultaneously. The main idea is to consider the equations describing the action of the constraints as an integral part of the overall process leading to the equations of motion of the system. Specifically, taking into account the form of the constraints, a suitable set of linear operators is first defined, acting between the tangent spaces of manifolds, where the motion of the system is viewed to evolve. This then provides the foundation for determining an associated set of operators, acting between the corresponding dual spaces as a vehicle of transferring Newton’s law of motion in an invariant form. As a consequence of this approach, a set of coupled second-order ordinary differential equations is derived for both the generalized coordinates and the dynamic Lagrange multipliers associated to the motion constraints automatically. This leads to considerable theoretical advantages, avoiding problems related to systems of differential–algebraic equations or penalty formulations. Apart from its theoretical value and elegance, this approach is expected to bring significant benefits in the field of numerical integration in multibody dynamics and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Angeles, J., Lee, S.K.: The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. ASME J. Appl. Mech. 55, 243–244 (1988)

    Article  MATH  Google Scholar 

  2. Bauchau, O.A.: Flexible Multibody Dynamics. Springer Science+Business Media B.V., London (2011)

    Book  MATH  Google Scholar 

  3. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer-Verlag New York Inc., New York (2003)

    Book  MATH  Google Scholar 

  6. Bloch, A.M., Crouch, P.: Newton’s law and integrability of nonholonomic systems. SIAM J. Control Optim. 36, 2020–2039 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bowen, R.M., Wang, C.-C.: Introduction to Vectors and Tensors, 2nd edn. Dover Publications Inc., New York (2008)

    MATH  Google Scholar 

  8. Brauchli, H.: Mass-orthogonal formulation of equations of motion for multibody systems. J. Appl. Math. Phys. (ZAMP) 42, 169–182 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brenan, K.E., Campbell, S.L., Petzhold, L.R.: Numerical Solution of Initial-Value Problems in Differential–Algebraic Equations. North-Holland, New York (1989)

    MATH  Google Scholar 

  10. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)

    Article  Google Scholar 

  11. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, New York (2005)

    Book  MATH  Google Scholar 

  12. Chetaev, N.G.: Theoretical Mechanics. Mir Publishers, Moscow (1989)

    MATH  Google Scholar 

  13. Essen, H.: On the geometry of nonholonomic dynamics. ASME J. Appl. Mech. 61, 689–694 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frankel, T.: The Geometry of Physics: An Introduction. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  15. Geradin, M., Cardona, A.: Flexible Multibody Dynamics. Wiley, New York (2001)

    Google Scholar 

  16. Goudas, I., Stavrakis, I., Natsiavas, S.: Dynamics of slider-crank mechanisms with flexible supports and non-ideal forcing. Nonlinear Dyn. 35, 205–227 (2004)

    Article  MATH  Google Scholar 

  17. Greenwood, D.T.: Principles of Dynamics. Prentice-Hall Inc., Englewood Cliffs, NJ (1988)

    Google Scholar 

  18. Haug, E.J.: Intermediate Dynamics. Prentice-Hall Inc., Englewood Cliffs, NJ (1992)

    MATH  Google Scholar 

  19. Jerkovsky, W.: The structure of multibody dynamics equations. J. Guid. Control 1, 173–184 (1978)

    Article  MATH  Google Scholar 

  20. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985)

    Google Scholar 

  21. Kecskemethy, A.: Sparse-matrix generation of Jacobians for the object-oriented modeling of multibody systems. Nonlinear Dyn. 9, 185–204 (1996)

    Article  MathSciNet  Google Scholar 

  22. Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discrete Contin. Dyn. Syst. Ser. S 3(1), 61–84 (2010)

  23. Kurdila, A.J., Junkins, J.L., Hsu, S.: Lyapunov stable penalty methods for imposing holonomic constraints in multibody system dynamics. Nonlinear Dyn. 4, 51–82 (1993)

    Google Scholar 

  24. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1952)

    Google Scholar 

  25. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robot Manipulation. CRC Press, Boca Raton, FL (1994)

    Google Scholar 

  26. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics. Wiley-Interscience, New York (1995)

    Book  MATH  Google Scholar 

  27. Neimark, J.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, vol. 33. American Mathematical Society (1972)

  28. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice-Hall Inc, Englewood Cliffs, NJ (1988)

  29. Nikravesh, P.E., Gim, G.: Systematic construction of the equations of motion for multibody systems containing closed kinematic loops. ASME J. Mech. Des. 115, 143–149 (1993)

    Article  Google Scholar 

  30. Orlandea, N., Chace, M.A., Calahan, D.A.: A sparsity-oriented approach to the dynamic analysis and design of mechanical systems—part 1. ASME J. Eng. Ind. 71, 773–779 (1977)

  31. Papastavridis, J.G.: Tensor Calculus and Analytical Dynamics. CRC Press, Boca Raton (1999)

    Google Scholar 

  32. Paraskevopoulos, E., Natsiavas, S.: A new look into the kinematics and dynamics of finite rigid body rotations using Lie group theory. Int. J. Solids Struct. 50, 57–72 (2013)

    Article  Google Scholar 

  33. Paraskevopoulos, E., Natsiavas, S.: On application of Newton’s law to mechanical systems with motion constraints. Nonlinear Dyn. 72, 455–475 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  34. Park, K.C., Chiou, J.C.: Stabilization of computational procedures for constrained dynamical systems. J. Guid. Control Dyn. 11, 365–370 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  35. Petzold, L.: Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput. 3, 367–384 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, New York (2005)

    Book  MATH  Google Scholar 

  37. Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solids Struct. 27, 371–393 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  38. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics a New Approach. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  39. Wehage, R.A., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  40. Wojtyra, M., Fraczek, J.: Joint reactions in rigid or flexible mechanisms with redundant constraints. Bull. Pol. Acad Sci. 60, 617–626 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Natsiavas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsiavas, S., Paraskevopoulos, E. A set of ordinary differential equations of motion for constrained mechanical systems. Nonlinear Dyn 79, 1911–1938 (2015). https://doi.org/10.1007/s11071-014-1783-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1783-5

Keywords

Navigation