Nonlinear Dynamics

, Volume 79, Issue 2, pp 1519–1534 | Cite as

Dynamic model of estrogen docking using multiscale analysis

Original Paper


This work investigates the application of a new multiscale analysis to dynamic modeling of the interaction between the estrogen molecule and its receptor. The key notion here is to explore the applications of this approach to objects as small as the estrogen molecule, a study that has not yet been done. This work lays the foundation for the development of a new theoretical screening technique to identify carcinogens. In this work, a three-dimensional, coarse grained approximation of estrogen is modeled. In order to facilitate the application of the techniques used herein, several reasonable simplifications of the estrogen model have been made. It has been observed that the time required to numerically integrate the classical Newton–Euler model of estrogen is quite long, because a small time step size, on the order of 0.1 ps (\(10^{-13}\) s) must be used to capture the dynamics. Here, a new multiscale analysis is used to develop a scaled model that can be numerically integrated in less time, yet accurately predict the system’s behavior .


Multiscale analysis Multiscale modeling Molecular dynamics Estrogen Estrogen receptor 



Many thanks to Drs. Subhrangsu Mandal and Peter Kroll, both from the Department of Chemistry and Biochemistry at the University of Texas at Arlington for their advice on molecular modeling. This work is supported by the National Science Foundation under Grant No. MCB-1148541.


  1. 1.
    Chemical structure of estradiol.
  2. 2.
    Estrogen receptor and estrogen coordinates.
  3. 3.
    Ahmadi, G.: Hydrodynamic forces, drag force and drag coefficient. Course Material for ME437/537Google Scholar
  4. 4.
    Anand, P., Kunnumakara, A.B., Sundaram, C., Harikumar, K.B., Tharakan, S.T., Lai, O.S., Sung, B., Aggarwal, B.B.: Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 25(9), 2097–2116 (2008)CrossRefGoogle Scholar
  5. 5.
    Asai, D., Shimohigashi, Y.: The assessment of xenoestrogens by competitive receptor binding assays. Jpn. J. Clin. Med. 58(12), 2486–2490 (2000)Google Scholar
  6. 6.
    Blair, R.M., Fang, H., Branham, W.S., Hass, B.S., Dia, S.L., Moland, C.L., Tong, W., Shi, L., Perkins, R., Sheehan, D.M.: The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol. Sci. 54, 138–153 (2000)CrossRefGoogle Scholar
  7. 7.
    Bolger, R., Wiese, T.E., Ervin, K., Nestich, S., Checovich, W.: Rapid screening of environmental chemicals for estrogen receptor binding capacity. Environ. Health Perspect. 106(9), 137145 (1998)CrossRefGoogle Scholar
  8. 8.
    Bowling, A., Palmer, A.F.: The small mass assumption applied to the multibody dynamics of motor proteins. J. Biomech. 42(9), 1218–1223 (2009). doi: 10.1016/j.jbiomech.2009.03.017 CrossRefGoogle Scholar
  9. 9.
    Bowling, A., Palmer, A.F., Wilhelm, L.: Contact and impact in the multibody dynamics of motor protein locomotion. Langmuir 25(22), 12974–12981. (2009)
  10. 10.
    Brooks III, B.R., Brooks Jr, C.L., M, A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinne, A.R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R.W., Post, C.B., Pu, J.Z., Schaffer, M., Tidor, B., Venable, R.M., Woodcock, H.L., Wu, X., Yang, W., York, D.M., Karplus, M.: Charmm: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)CrossRefGoogle Scholar
  11. 11.
    Celik, L., Lund, J.D.D., Schiott, B.: Conformational dynamics of the estrogen receptor r: molecular dynamics simulations of the influence of binding site structure on protein dynamics. Biochemistry 46, 1743–1758 (2006)CrossRefGoogle Scholar
  12. 12.
    Charles, G.D., Gennings, C., Zacharewski, T.R., Gollapud, B.B., Carney, E.W.: An approach for assessing estrogen receptor-mediated interactions in mixtures of three chemicals: a pilot study. Toxicol. Sci. 68, 349–360 (2002)CrossRefGoogle Scholar
  13. 13.
    Cunningham, E.: On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Lond. 83, 357–365 (1910)MATHCrossRefGoogle Scholar
  14. 14.
    Daston, G.P., Gooch, J.W., Breslin, W.J., Shuey, D.L., Nikiforov, A.I., F, T.A., Gorsuch, J.W.: Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reprod. Toxicol. 11(4), 465–481 (1997)CrossRefGoogle Scholar
  15. 15.
    Fang, H., Tong, W., Shi, L.M., Blair, R., Perkins, R., Branham, W., Hass, B.S., Xie, Q., Dial, S.L., Moland, C.L., Sheehan, D.M.: Structure–activity relationships for a large diverse set of natural, synthetic, and environmental estrogens. Chem. Res. Toxicol. 14, 280–294 (2001)CrossRefGoogle Scholar
  16. 16.
    Fukuzawa, K., Kitaura, K., Uebayasi, M., Nakata, K., Kaminuma, T., Nakano, T.: Ab initio quantum mechanical study of the binding energies of human estrogen receptor with its ligands: an application of fragment molecular orbital method. J. Comput. Chem. 26(1), 110 (2004)Google Scholar
  17. 17.
    Haghshenas-Jaryani, M., Bowling, A.: Multiscale dynamic modeling of processive motor proteins. In: Proceedings of the IEEE International Conference Robotics and Biomimetics (ROBIO), pp. 1403–1408 (2011)Google Scholar
  18. 18.
    Haghshenas-Jaryani, M., Bowling, A.: A new numerical strategy for handling quaternions in dynamic modeling and simulation of rigid multibody systems. In: Proceedings of the 2nd Joint International Conference on Multibody System Dynamics (IMSD) (2012)Google Scholar
  19. 19.
    Haghshenas-Jaryani, M., Bowling, A.: A new switching strategy for addressing euler parameters in dynamic modeling and simulation of rigid multibody systems. Multibody Syst. Dyn. 30(2), 185–197 (2013). doi: 10.1007/s11044-012-9333-8
  20. 20.
    Hayashi, K., Takano, M.: Violation of the fluctuation–dissipation theorem in a protein system. Biophys. J. 93(3), 895–901 (2007)CrossRefGoogle Scholar
  21. 21.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 2nd edn. Academic Press, Waltham (2002)Google Scholar
  22. 22.
    Karplus, M., A.Petsko, G.: Molecular dynamics simulations in biology. Nature 347, 631–639 (1990)CrossRefGoogle Scholar
  23. 23.
    Katzenellenbogen, J.A.: The structural pervasiveness of estrogenic activity. Environ. Health. Perspect. 103(7), 99–101 (1995)Google Scholar
  24. 24.
    Kim, J.H., Mulholland, G.W., Kukuck, S.R., Pui, D.Y.H.: Slip correction measurements of certified psl nanoparticles using a nanometer differential mobility analyzer (nano-dma) for knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110(1), 31–54 (2005)CrossRefGoogle Scholar
  25. 25.
    Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1973)MATHGoogle Scholar
  26. 26.
    Nikov, G.N., Eshete, M., Rajnarayanan, R.V., Alworth, W.L.: Interactions of synthetic estrogens with human estrogen receptors. J. Endocrinol. 170, 137145 (2001)Google Scholar
  27. 27.
    Ohno, K., Fukushima, T., Santa, T., Waizumi, N., Tokuyama, H., Maeda, M., Imai, K.: Estrogen receptor binding assay method for endocrine disruptors using fluorescence polarization. Anal. Chem. 74, 4391–4396 (2002)CrossRefGoogle Scholar
  28. 28.
    Parrish, D., Zhurova, E.A., Kirschbaum, K., Pinkerton, A.A.: Experimental charge density study of estrogens: 17 beta-estradiol.urea. J. Phys. Chem. 110(51), 26,442–26,447 (2006)CrossRefGoogle Scholar
  29. 29.
    Payne, J., Scholze, M., Kortenkamp, A.: Mixtures of four organochlorines enhance human breast cancer cell proliferation. Environ. Health Perspect. 109(4), 391–397 (2001)CrossRefGoogle Scholar
  30. 30.
    Pinkerton, A.A.: Measurement of the electron density distribution of estrogens-a first step to advance drug design. The University of Toledo, Toledo, Ohio, Tech. rep. (2001)Google Scholar
  31. 31.
    Rafii-Tabar, H., Jamali, Y., Lohrasebi, A.: Computational modelling of the stochastic dynamics of kinesin biomolecular motors. Phys. A 381, 239–254 (2007)CrossRefGoogle Scholar
  32. 32.
    Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York (1965)Google Scholar
  33. 33.
    Rossi, A.M., Taylor, C.W.: Analysis of protein–ligand interactions by fluorescence polarization. Nat. Protoc. 6(3), 365–387 (2011)CrossRefGoogle Scholar
  34. 34.
    Theo, C., vom Saal, F.S., Soto, A.M.: Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378–384 (1993)CrossRefGoogle Scholar
  35. 35.
    U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research: Guidance for Industry Safety Testing of Drug Metabolites (2008)Google Scholar
  36. 36.
    Yu, J., Ha, T., Schulten, K.: Structure-based model of the stepping motor of PcrA helicase. Biophys. J. 91(6), 2097–2114 (2006)CrossRefGoogle Scholar
  37. 37.
    Yu, S.J., Keenan, S.M., Tong, W., Welsh, W.J.: Influence of the structural diversity of data sets on the statistical quality of three-dimensional quantitative structure-activity relationship (3d-qsar) models: predicting the estrogenic activity of xenoestrogens. Chem. Res. Toxicol. 15, 1229–1234 (2002)Google Scholar
  38. 38.
    Zhurova, E.A., Matta, C.F., Wu, N., Zhurov, V.V., Pinkerton, A.A.: Experimental and theoretical electron density study of estrone. J. Am. Chem. Soc. 128(27), 8849–8861 (2006)CrossRefGoogle Scholar
  39. 39.
    Zhurova, E.A., Zhurov, V.V., Chopra, D., Stash, A.I., Pinkerton, A.A.: 17 alpha-estradiol.1/2 h2o: super-structural ordering, electronic properties, chemical bonding, and biological activity in comparison with other estrogens. J. Am. Chem. Soc. 131, 17,26017,269 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations