Skip to main content
Log in

New invariant measures to track slow parameter drifts in fast dynamical systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Estimates of quantitative characteristics of nonlinear dynamics, e.g., correlation dimension or Lyapunov exponents, require long time series and are sensitive to noise. Other measures (e.g., phase space warping or sensitivity vector fields) are relatively difficult to implement and computationally intensive. In this paper, we propose a new class of features based on Birkhoff ergodic theorem, which are fast and easy to calculate. They are robust to noise and do not require large data or computational resources. Application of these metrics in conjunction with the smooth orthogonal decomposition to identify/track slowly changing parameters in nonlinear dynamical systems is demonstrated using both synthetic and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The same derivation can also be repeated for the characteristic position metric to show that \(\mathbf {P}(\mathbf y)\) is also a direct function of \(\varvec{\phi }\).

References

  1. Abarbanel, H.: Analysis of Observed Chaotic Data. Institute for Nonlinear Science. Springer, Berlin (1996)

    Book  Google Scholar 

  2. Dingwell, J.B.: Lyapunov Exponents. Wiley, New York (2006)

    Book  Google Scholar 

  3. Chelidze, D., Cusumano, J.P.: Phase space warping: nonlinear time series analysis for slowly drifting systems. Philos. Trans. Roy. Soc. A 364, 2495–2513 (2006)

  4. Chelidze, D., Cusumano, J.P., Chatterjee, A.: Dynamical systems approach to damage evolution tracking, part I: description and experimental application. J. Vib. Acoust. 124(2), 250–257 (2002)

    Article  Google Scholar 

  5. Chelidze, D., Liu, M.: Dynamical systems approach to fatigue damage identification. J. Sound Vib. 281, 887–904 (2004)

    Article  Google Scholar 

  6. Chelidze, D., Liu, M.: Multidimensional damage identification based on phase space warping: an experimental study. Nonlinear Dyn. 46(1–2), 887–904 (2006)

    Google Scholar 

  7. Clement, A., Laurens, S.: An alternative to the Lyapunov exponent as a damage sensitive feature. Smart Mater. Struct. 20(2) 025017 (2011)

  8. Cusumano, J., Kimble, B.: A stochastic interrogation method for experimental measurements of global dynamics and basin evolution: application to a two-well oscillator. Nonlinear Dyn. 8(2), 213–235 (1995)

    Article  Google Scholar 

  9. Donner, R.V., Barbosa, S.M. (eds.): Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics. Springer, Berlin (2008)

    Google Scholar 

  10. EtehadTavakol, M., Ng, E.Y.K., Lucas, C., Sadri, S., Ataei, M.: Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Phys. Technol. 55(4), 345–352 (2012)

    Article  Google Scholar 

  11. Ghafari, S., Golnaraghi, F., Ismail, F.: Effect of localized faults on chaotic vibration of rolling element bearings. Nonlinear Dyn. 53, 287–301 (2008)

    Article  MATH  Google Scholar 

  12. Hosseinifard, B., Moradi, M.H., Rostami, R.: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput. Methods Programs Biomed. 109(3), 339–345 (2013)

    Article  Google Scholar 

  13. Kacimi, S., Laurens, S.: The correlation dimension: a robust chaotic feature for classifying acoustic emission signals generated in construction materials. J. Appl. Phys. 106(2), 024909 (2009)

  14. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  15. Moon, F., Holmes, P.J.: A magnetoelastic strange attractor. J. Sound Vib. 65(2), 275–296 (1979)

    Article  MATH  Google Scholar 

  16. Nichols, J., Todd, M.: Nonlinear Features for SHM Applications. Wiley, New York (2009)

    Book  Google Scholar 

  17. Todd, M.D., Nichols, J.M., Pecora, L.M., Virgin, L.N.: Vibration-based damage assessment utilizing state space geometry changes: local attractor variance ratio. Smart Mater. Struct. 10(5), 1000–1008 (2001)

    Article  Google Scholar 

  18. Wang, W., Chen, J., Wu, X., Wu, Z.: The application of some non-linear methods in rotating machinery fault diagnosis. Mech. Syst. Signal Process. 15(4), 697–705 (2001)

    Article  Google Scholar 

  19. Wang, W.J., Wu, Z.T., Chen, J.: Fault identification in rotating machinery using the correlation dimension and bispectra. Nonlinear Dyn. 25(4), 383–393 (2001)

    Article  MATH  Google Scholar 

  20. Wolf, A.: Quantifying Chaos with Lyapunov Exponents. Princeton University Press, Princeton (1986)

    Book  Google Scholar 

  21. Yuri, M.P.: Dynamical Systems and Ergodic Theory. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chelidze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.H., Chelidze, D. New invariant measures to track slow parameter drifts in fast dynamical systems. Nonlinear Dyn 79, 1207–1216 (2015). https://doi.org/10.1007/s11071-014-1737-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1737-y

Keywords

Navigation