Skip to main content
Log in

Analysis of the chaotic regime of MEMS/NEMS fixed–fixed beam resonators using an improved 1DOF model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Galerkin’s method is used to derive a consistent one degree of freedom (1DOF) model for a suspended fixed–fixed beam micro/nanoelectromechanical resonator including the contributions of geometric nonlinearity and the Casimir force. This model goes beyond the parallel plate approximation by including the main correction to the electrostatic and Casimir forces due to the beam curvature. The chaotic regime found in a small region of the parameter space, close to the dynamic pull-in, is fully characterized by means of the calculation of the Lyapunov exponent and bifurcation diagrams. The comparison with results presented in the literature, obtained using a much more computationally demanding approach, evidences the reliability of the proposed 1DOF model. It also evidences the relevance of incorporating the effects of beam curvature in simplified models of the beam dynamics when large displacements are expected, and the effect of the Casimir force when low operating voltages and small gaps are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rhoads, J.F., Shaw, S.W., Tuner, K.L.: Nonlinear dynamics and its applications in micro- and nanoresonators. J. Dyn. Syst-T. ASME 132, 034001 (2010)

    Article  Google Scholar 

  2. Wang, Y.C., Adams, S.G., Thorp, J.S., McDonald, N.C., Hartwell, P., Bertsch, F.: Chaos in MEMS, Parameter estimation and its potential application. IEEE Trans. Circuits Sys.t I, Fundamental Theory Application 45, 1013–1020 (1998)

    Article  Google Scholar 

  3. Liu, S., Davidson, A., Lin, Q.: Simulation studies on nonlinear dynamics and chaos in a MEMS cantilever control system. J. Micromech. Microeng. 14, 1064–1073 (2004)

    Article  Google Scholar 

  4. De, S.K., Aluru, N.R.: Complex oscillations and chaos in electrostatic microelectromechanical systems under superharmonic excitations. Phys. Rev. Lett. 94, 204101 (2005)

    Article  Google Scholar 

  5. Lin, W.-H., Zhao, Y.-P.: Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos Soliton. Fract. 23, 1777–1785 (2005)

    Article  MATH  Google Scholar 

  6. Chavarette, F.R., Balthazar, J.M., Felix, J.L., Rafikov, M.: A reducing of a chaotic movement to a periodic orbit, of a micro-electro-mechanical system, by using an optimal linear control design. Commun. Nonlinear Sci. Numer. Simulat. 14, 1844–1853 (2009)

    Article  Google Scholar 

  7. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Graff, F.: Wave motion in elastic solids. Dover, New York (1975)

    MATH  Google Scholar 

  9. Younis, M.I.: MEMS linear and nonlinear statics and dynamics. Springer, New York (2011)

    Book  Google Scholar 

  10. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. B 51, 793–795 (1948)

    MATH  Google Scholar 

  11. Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956)

    MathSciNet  Google Scholar 

  12. Raabe, C., Knöll, L., Welsch, D.-G.: Three-dimensional Casimir force between absorbing multilayer dielectrics. Phys. Rev. A 68, 033810 (2003)

    Article  Google Scholar 

  13. Gusso, A., Delben, G.J.: Dispersion force for materials relevant for micro- and nanodevices fabrication. J. Phys. D: Appl. Phys. 41, 175405 (2008)

    Article  Google Scholar 

  14. Serry, F.M., Walliser, D., Maclay, G.J.: The anharmonic Casimir oscillator (ACO) - The Casimir effect in a model microelectromechanical system. J. Microelectromechanical Syst. 4, 193–205 (1995)

    Article  Google Scholar 

  15. Palasantzas, G., DeHosson, JThM: Phase maps of microelectromechanical switches in the presence of electrostatic and Casimir forces. Phys. Rev. B 72, 121409 (2005)

    Article  Google Scholar 

  16. Lin, W.-H., Zhao, Y.-P.: Influence of damping on the dynamical behavior of the electrostatic paralle-plate and torsional actuators with intermolecular forces. Sensors 7, 3012–3026 (2007)

    Article  Google Scholar 

  17. Batra, R.C., Porfiri, M., Spinello, D.: Effects of Casimir force on pull-in instability in micromembranes. EPL 77, 20010 (2007)

    Article  Google Scholar 

  18. Palasantzas, G., DeHosson, JThM: Phase maps of microelectromechanical switches in the presence of the Casimir force and finite plasmon frequency corrections. J. Appl. Phys. 99, 084906 (2006)

    Article  Google Scholar 

  19. Gusso, A., Delben, G.J.: Influence of the Casimir force on the pull-in parameters of silicon based electrostatic torsional actuators. Sens. Actuators A 135, 792–800 (2007)

    Article  Google Scholar 

  20. Gusso, A.: Acoustic electromechanical energy loss mechanism for suspended micro- and nanoelectromechanical resonators. Appl. Phys. Lett. 96, 193504 (2010)

    Article  Google Scholar 

  21. Gusso, A.: Phenomenological modeling of long range noncontact friction in micro- and nanoresonators. J. Appl. Phys. 110, 064512 (2011)

    Article  Google Scholar 

  22. Cleland, A.N.: Foundations of nanomechanics. Springer, Berlim (2003)

    Book  Google Scholar 

  23. Haguigui, H.S., Markazi, A.H.D.: Chaos prediction and control in MEMS resonators. Commun. Nonlinear Sci. Numer. Simulat. 15, 3091–3099 (2010)

    Article  Google Scholar 

  24. Siewe, M.S., Hegazy, U.H.: Homoclinic bifurcation and chaos control in MEMS resonators. Appl. Math. Model. 35, 5533–5552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hunter, R.J.: Foundations of Colloid Science. Oxford University Press, New York (2001)

    Google Scholar 

  26. Hirsch, M., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Publishing, UK (2004)

    MATH  Google Scholar 

  27. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, USA (1994)

    Google Scholar 

  28. Zini, A.R., Gallas, J.A.C.: Lyapunov exponents for a Duffing oscillator. Physica D 89, 71–82 (1995)

    Article  MathSciNet  Google Scholar 

  29. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  30. De, S.K., Aluru, N.R.: Complex nonlinear oscillations in electrostatically actuated microstructures. J. Microelectromech. Syst. 12, 355–369 (2006)

    Article  Google Scholar 

  31. Grebogi, C., Ott, E., Yorke, J.A.: Crisis, sudden changes in chaotic attractors and transient chaos. Physica D 7, 181–200 (1983)

    Article  MathSciNet  Google Scholar 

  32. Nayfeh, A., Pai, F.: Linear and nonlinear structural mechanics. Wiley and Sons, New York (2004)

    Book  MATH  Google Scholar 

  33. Silva, C.J., Daqaq, M.F.: On estimating the effective nonlinearity of structural modes using approximate modal shapes. J. Sound Vib. 20, 1751–1764 (2014)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by Conselho Nacional de Desenvolvimento Científico-CNPq and Fundação de Amparo à Pesquisa Carlos Chagas Filho-FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Gusso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, T.D., Dantas, W.G. & Gusso, A. Analysis of the chaotic regime of MEMS/NEMS fixed–fixed beam resonators using an improved 1DOF model. Nonlinear Dyn 79, 967–981 (2015). https://doi.org/10.1007/s11071-014-1715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1715-4

Keywords

Navigation