Nonlinear Dynamics

, Volume 79, Issue 2, pp 865–883 | Cite as

Adaptive actuator failure compensation for a class of MIMO nonlinear time delay systems

Original Paper

Abstract

In this paper, an adaptive actuator failure compensation scheme is proposed for a class of parametric-strict-feedback multi- input multi-output nonlinear systems with unknown time- varying state delays. The considered actuator failures are types of loss of effectiveness, in which unknown system inputs may lose unknown fraction of their effectiveness. The adaptive compensation controller is constructed by utilizing a backstepping design method. The appropriate Lyapunov–Krasovskii functionals are introduced to design new adaptive laws to compensate the unknown actuator failures as well as uncertainties from unknown parameters and state delays. The boundedness of all the closed-loop signals is guaranteed, and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.

Keywords

Actuator failure Multi-input multi-output Nonlinear systems Time-varying state delay Adaptive compensation Backstepping 

References

  1. 1.
    Yoo, S.J.: Adaptive fault compensation control for a class of nonlinear systems with unknown time-varying delayed faults. Nonlinear Dyn. 70(1), 55–65 (2012)CrossRefMATHGoogle Scholar
  2. 2.
    Xu, Y., Tong, S., Li, Y.: Adaptive fuzzy fault-tolerant control of static var compensator based on dynamic surface control technique. Nonlinear Dyn. 73(3), 2013–2023 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hu, Q.: Robust adaptive sliding mode attitude maneuvering and vibration damping of three-axis-stabilized flexible spacecraft with actuator saturation limits. Nonlinear Dyn. 55(4), 301–321 (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Hu, Q., Xiao, B.: Fault tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64(1–2), 13–23 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Tao, G., Joshi, S.M., Ma, X.L.: Adaptive state feedback control and tracking control of systems with actuator failures. IEEE Trans. Autom. Control 46(1), 78–95 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Tao, G., Chen, S., Joshi, S.M.: An adaptive control scheme for systems with unknown actuator failures. Automatica 38, 1027–1034 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tao, G., Chen, S., Joshi, S.M.: An adaptive actuator failure compensation using output feedback. IEEE Trans. Autom. Control 47(3), 506–511 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wang, J., Pei, H.-L., Wang, N.-Z.: Adaptive output feedback control using fault compensation and fault estimation for linear system with actuator failure. Int. J. Autom. Comput. 10(5), 463–471 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tao, G., Tang, X., Chen, S., Joshi, S.M.: Adaptive Control of Systems with Actuator Failures. Springer, Berlin (2004)CrossRefMATHGoogle Scholar
  10. 10.
    Tang, X., Tao, G., Joshi, S.M.: Adaptive output feedback actuator failure compensation for a class of nonlinear systems. Int. J. Adapt. Control Signal Process. 19(6), 419–444 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Zhang, Z., Weisheng, C.: Adaptive output feedback control of nonlinear systems with actuator failures. Inf. Sci. 179(24), 4249–4260 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    Cai, J., Wen, C., Su, H., Liu, Z.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 58(9), 2388–2394 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Yao, X., Tao, G., Qi, R., Jiang, B.: An adaptive actuator failure compensation scheme for a class of nonlinear MIMO systems. J. Franklin Inst. 350(9), 2433–2441 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tang, X., Tao, G., Joshi, S.M.: Adaptive actuator failure compensation of nonlinear MIMO systems with an aircraft control application. Automatica 43(11), 1869–1883 (2007)Google Scholar
  15. 15.
    Benbrahim, M., Essounbouli, N., Hamzaoui, A., Betta, A.: Adaptive type 2 fuzzy sliding mode controller for SISO nonlinear systems subject to actuator faults. Int. J. Autom. Comput. 10(4), 335–342 (2013)CrossRefGoogle Scholar
  16. 16.
    Huo, B., Tong, S., Li, Y.: Observer based adaptive fuzzy fault tolerant output feedback control of uncertain nonlinear systems with actuator faults. Int. J. Control Autom. Syst. 10(6), 1119–1128 (2012)CrossRefGoogle Scholar
  17. 17.
    Li, P., Yang, G.: An adaptive fuzzy design for fault tolerant control of MIMO nonlinear uncertain systems. J. Control Theory Appl. 9(2), 244–250 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tong, S., Wang, T., Li, Y.: Fuzzy adaptive actuator failure compensation control of uncertain stochastic nonlinear systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 22(3), 563–574 (2014)CrossRefGoogle Scholar
  19. 19.
    Loiseau, J., Michiels, W., Niculescu, S., Sipahi, R.: Topics in time delay systems: analysis, algorithms and control. Springer, Berlin (2009)Google Scholar
  20. 20.
    Richard, J.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ge, S.S., Hong, F., Lee, T.H.: Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7), 1181–1190 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hua, C., Lin, P.X., Guan, X.: Backstepping control for nonlinear systems with time delays and applications to chemical reactor systems. IEEE Trans. Ind. Electron. 56(9), 3723–3732 (2009)CrossRefGoogle Scholar
  23. 23.
    Bresch-Pietri, D., Chauvin, J., Petit, N.: Adaptive control scheme for uncertain time-delay systems. Automatica 48(8), 1536–1552 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Zhang, T.P., Ge, S.S.: Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead zones and gain signs. Automatica 43(6), 1021–1033 (2007)Google Scholar
  25. 25.
    Ge, S.S., Hong, F., Lee, T.H.: Adaptive neural control of nonlinear time delay systems with unknown virtual control coefficients. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 516–599 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhao, Q., Cheng, C.: State-feedback control for time-delayed systems with actuator failures. In: Proceedings of the American Control Conference, vol. 1, pp. 827–832, June 4–6 (2003)Google Scholar
  27. 27.
    Cheng, C., Zhao, Q.: Reliable control of uncertain delayed systems with integral quadratic constrains. In: IEE Proceedings of the Control Theory Applications, vol. 151, pp. 790–796, Nov. 22 (2004)Google Scholar
  28. 28.
    Mirkin, M., Gutman, P.: Model reference adaptive control of state-delayed system with actuator failures. Int. J. Control 78(3), 186–195 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Mirkin, B.M., Gutman, P.O.: Adaptive coordinated decentralized control of state delayed systems with actuator failures. Asian J. Control 8(4), 441–448 (2006)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ye, D., Yang, G.H.: Adaptive reliable \(H_\infty \) control for linear time-delay systems via memory state feedback. IET Control Theory Appl. 1(3), 713–721 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ye, D., Yang, G.H.: Delay-dependent adaptive reliable \(H_\infty \) control of linear time-varying delay systems. Int. J. Robust Nonlinear Control 19(4), 462–479 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kamali, M., Askari, J., Sheikholeslam, F.: Output-feedback adaptive actuator failure compensation controller for systems with unknown state delays. Nonlinear Dyn. 64(4), 2397–2410 (2012)Google Scholar
  33. 33.
    Kamali, M., Askari, J., Sheikholeslam, F.: An adaptive controller design for linear state delay systems with actuator failures. Int. J. Control Autom. Syst. 12(3), 599–608 (2014)CrossRefGoogle Scholar
  34. 34.
    Chen, W., Saif, M.: An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems. Int. J. Robust Nonlinear Control 16(1), 1–19 (2006)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Zhang, K., Jiang, B., Cocquempot, V.: Fast adaptive fault estimation and accommodation for nonlinear time varying delay systems. Asian J. Control 11(6), 643–652 (2009)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ye, D., Yang, G.H.: Adaptive fault-tolerant control for a class of nonlinear systems with time delay. Int. J. Syst. Sci. 39(1), 43–56 (2008)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Hua, C., Ding, S.X., Guan, X.: Robust controller design for uncertain multiple-delay systems with unknown actuator parameters. Automatica 48(1), 211–218 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Tong, S., Huo, B., Li, Y.: Observer based adaptive decentralized fuzzy fault tolerant control of nonlinear large scale systems with actuator failures. IEEE Trans. Fuzzy Syst. 22(1), 1–15 (2014)CrossRefGoogle Scholar
  39. 39.
    Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and adaptive control design. Wiley, New York (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations