Skip to main content
Log in

Phase diagram of a continuum traffic flow model with a static bottleneck

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The phase transitions are investigated in a continuum speed-gradient model with a static bottleneck under open boundary conditions. The bottleneck situation has been studied using two different approaches—explicit and implicit. The phase diagrams showing different traffic states are presented. The effect of strength of bottleneck has been analyzed, and it is found that the strength parameter has no qualitative effect in the explicit case while has considerable effect in the implicit case. Furthermore, the results of both the approaches are compared, and the consistency between them is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cassidy, M.J., Bertini, R.L.: Some traffic features at freeway bottlenecks. Transp. Res. B 33(1), 25–42 (1999)

    Article  Google Scholar 

  3. Chuan-Yao, L., Tie-Qiao, T., Hai-Jun, H., Hua-Yan, S.: A new car-following model with consideration of driving resistance. Chin. Phys. Lett. 28(3), 038,902 (2011)

    Article  Google Scholar 

  4. Chung, K., Rudjanakanoknad, J., Cassidy, M.J.: Relation between traffic density and capacity drop at three freeway bottlenecks. Transp. Res. B 41(1), 82–95 (2007)

    Article  Google Scholar 

  5. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. B 29(4), 277–286 (1995)

    Article  Google Scholar 

  6. Daganzo, C.F., Laval, J.A.: On the numerical treatment of moving bottlenecks. Transp. Res. B 39(1), 31–46 (2005)

    Article  Google Scholar 

  7. Ge, H.X., Dai, S.Q., Dong, L.Y., Xue, Y.: Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application. Phys. Rev. E 70(6), 066,134 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gupta, A.K., Katiyar, V.K.: Analyses of shock waves and jams in traffic flow. J. Phys. A: Math. Gen. 38(19), 4069 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gupta, A.K., Katiyar, V.K.: A new anisotropic continuum model for traffic flow. Phys. A 368(2), 551–559 (2006)

    Article  Google Scholar 

  10. Gupta, A.K., Katiyar, V.K.: Phase transition of traffic states with on-ramp. Phys. A 371(2), 674–682 (2006)

    Article  Google Scholar 

  11. Gupta, A.K., Sharma, S.: Nonlinear analysis of traffic jams in an anisotropic continuum model. Chin. Phys. B 19(11), 110503 (2010)

    Article  MathSciNet  Google Scholar 

  12. Helbing, D., Hennecke, A., Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82(21), 4360 (1999)

    Article  Google Scholar 

  13. Helbing, D., Treiber, M.: Gas-kinetic-based traffic model explaining observed hysteretic phase transition. Phys. Rev. Lett. 81, 3042–3045 (1998)

    Article  Google Scholar 

  14. Ishibashi, Y., Fukui, M.: The bottleneck effect on high-speed car traffic. J. Phys. Soc. Jpn. 70(5), 1237–1239 (2001)

    Article  Google Scholar 

  15. Jiang, R., Wu, Q.S., Zhu, Z.J.: A new continuum model for traffic flow and numerical tests. Transp. Res. B 36(5), 405–419 (2002)

    Article  Google Scholar 

  16. Kerner, B.S., Konhäuser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48(4), R2335 (1993)

    Article  Google Scholar 

  17. Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a pde-ode coupled model. SIAM J. Math. Anal. 43(1), 50–67 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lee, H.Y., Lee, H.W., Kim, D.: Dynamic states of a continuum traffic equation with on-ramp. Phys. Rev. E 59, 5101–5111 (1999)

    Article  Google Scholar 

  19. Lee, H.Y., Lee, H.W., Kim, D.: Traffic states of a model highway with on-ramp. Phys. A 281(1), 78–86 (2000)

    Article  Google Scholar 

  20. Lighthill, M.J., Whitham, G.B.: On kinematic waves. ii. a theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. A 229(1178), 317–345 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  21. Munoz, J.C., Daganzo, C.: Experimental characterization of multi-lane freeway traffic upstream of an off-ramp bottleneck. In: California Partners for Advanced Transit and Highways (PATH) (2000)

  22. Nagatani, T.: Instability of a traffic jam induced by slowing down. J. Phys. Soc. Jpn. 66(7), 1928–1931 (1997)

    Article  Google Scholar 

  23. Nagatani, T.: Phase diagrams of noisy traffic states in the presence of a bottleneck. Phys. A 280(3), 602–613 (2000)

    Article  Google Scholar 

  24. Payne, H.J.: Models of freeway traffic and control. In: Mathematical Models of Public Systems, pp. 51–61 (1971)

  25. Peng, G.H., Cai, X.H., Liu, C.Q., Cao, B.F.: A new lattice model of traffic flow with the consideration of the driver’s forecast effects. Phys. Lett. A 375(22), 2153–2157 (2011)

    Article  MATH  Google Scholar 

  26. Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)

    Article  MathSciNet  Google Scholar 

  27. Tang, C.F., Jiang, R., Wu, Q.S.: Phase diagram of speed gradient model with an on-ramp. Phys. A 377(2), 641–650 (2007)

    Article  Google Scholar 

  28. Tang, T.Q., Huang, H.J.: Continuum models for freeways with two lanes and numerical tests. Chin. Sci. Bull. 49(19), 2097–2104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tang, T.Q., Huang, H.J., Gao, Z.Y.: Stability of the car-following model on two lanes. Phys. Rev. E 72(6), 066124 (2005)

    Article  Google Scholar 

  30. Tang, T.Q., Huang, H.J., Shang, H.Y.: A new macro model for traffic flow with the consideration of the driver’s forecast effect. Phys. Lett. A 374(15), 1668–1672 (2010)

    Article  MATH  Google Scholar 

  31. Tang, T.Q., Huang, H.J., Wong, S., Gao, Z.Y., Zhang, Y.: A new macro model for traffic flow on a highway with ramps and numerical tests. Commun. Theor. Phys. 51(1), 71 (2009)

    Article  MATH  Google Scholar 

  32. Tang, T.Q., Huang, H.J., Wong, S.C., Jiang, R.: A car-following model with the anticipation effect of potential lane changing. Acta Mech. Sinica 24(4), 399–407 (2008)

    Article  MATH  Google Scholar 

  33. Tang, T.Q., Huang, H.J., Wong, S.C., Jiang, R.: A new car-following model with consideration of the traffic interruption probability. Chin. Phys. B 18(3), 975 (2009)

    Article  Google Scholar 

  34. Tang, T.Q., Huang, H.J., Xu, G.: A new macro model with consideration of the traffic interruption probability. Phys. A 387(27), 6845–6856 (2008)

    Article  Google Scholar 

  35. Tang, T.Q., Li, C.Y., Huang, H.J.: A new car-following model with the consideration of the driver’s forecast effect. Phys. Lett. A 374(38), 3951–3956 (2010)

    Article  MATH  Google Scholar 

  36. Tang, T.Q., Li, P., Wu, Y.H., Huang, H.J.: A macro model for traffic flow with consideration of static bottleneck. Commun. Theor. Phys. 58, 300–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tang, T.Q., Li, P., Yang, X.B.: An extended macro model for traffic flow with consideration of multi static bottlenecks. Phys. A 392(17), 3537–3545 (2013)

    Article  MathSciNet  Google Scholar 

  38. Tang, T.Q., Li, Y., Huang, H.J.: The effects of bus stop on traffic flow. Int. J. Mod. Phys. C 20(06), 941–952 (2009)

    Article  MATH  Google Scholar 

  39. Tang, T.Q., Wang, Y.P., Yang, X.B., Wu, Y.H.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70(2), 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The second author acknowledges CSIR, New Delhi, India, for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Dhiman, I. Phase diagram of a continuum traffic flow model with a static bottleneck. Nonlinear Dyn 79, 663–671 (2015). https://doi.org/10.1007/s11071-014-1693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1693-6

Keywords

Navigation