Skip to main content
Log in

Stability and bifurcation analysis of a diffusive prey–predator system in Holling type III with a prey refuge

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A diffusive prey–predator system with Holling type III response function incorporating a prey refuge subject to Neumann boundary conditions is considered. The sufficient conditions are given to ensure that the equilibria are local and global asymptotically stable, respectively. And the existence of Hopf bifurcation at the positive equilibrium is obtained by regarding prey refuge as parameter. By the theory of normal form and center manifold, a algorithm for determining the direction and stability of Hopf bifurcation is derived. Some numerical simulations are carried out for illustrating the analytic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beretta, E., Takeuchi, Y.: Global stability of single-species diffusion Volterra models with continuous time delays. Bull. Math. Biol. 49, 431–448 (1097)

  2. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 246–252 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Celik, C., Merdan, H.: Hopf bifurcation analysis of a system of coupled delayed-differential equations. Appl. Math. Comput. 219, 6605–6617 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Celik, C.: Dynamical analysis of a ratio dependent Holling–Tanner type predator–prey model with delay. J. Appl. Funct. Anal. 8, 194–213 (2013)

    MATH  MathSciNet  Google Scholar 

  5. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey–predator systems. Nonlinear Dyn. 67, 2543–2548 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Freedman, H., Takeuchi, Y.: Global stability and predator dynamics in a model of prey dispersal in a patchy environment. Nonlinear Anal. 13, 993–1002 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gonlez-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  8. Hassard, B., Kazarinoff, N., Wan, Y.-H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  9. Huang, Y., Chen, F., Li, Z.: Stability analysis of a prey–predator model with Holling type III response function incorporating a prey refuge. Appl. Math. Comput. 182, 672–683 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ji, L., Wu, C.: Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorparating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 2285–2295 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kar, T.: Stability analysis of a prey–predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10, 681–691 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kar, T.: Modelling and analysis of a harvested prey–predator system incorporating a prey refuge. J. Comput. Appl. Math. 185, 19–33 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ko, W., Ryu, K.: A qualitative study on general Gause-type predator–prey models with constant diffusion rates. J. Math. Anal. Appl. 344, 217–230 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Krivan, V.: Effects of optimal antipredator behavior of prey on predator–prey dynamics: the role of refuges. Theor. Popul. Biol. 53, 131–1142 (1998)

    Article  MATH  Google Scholar 

  15. Kuang, Y., Takeuchi, Y.: Predator–prey dynamics in models of prey dispersal in two-patch environments. Math. Biosci. 120, 77–98 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, P., Xue, Y.: Spatiotemporal dynamics of a predator–prey model. Nonlinear Dyn. 69, 71–77 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ma, Z., Li, W., Zhao, Y., Wang, W., Zhang, H., Li, Z.: Effects of prey refuges on a predator–prey model with a class of functional responses: the role of refuges. Math. Biosci. 218, 73–79 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mchich, R., Auger, P., Poggiale, J.: Effect of predator density dependent dispersal of prey on stability of a predator–prey system. Math. Biosci. 206, 343–356 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pal, P., Mandal, P., Lahiri, K.: A delayed ratio-dependent predator–prey model of interacting populations with Holling type III functional response. Nonlinear Dyn. 76, 201–220 (2014)

  20. Sih, A.: Prey refuges and predator–prey stability. Theor. Popul. Biol. 31, 1–12 (1987)

    Article  MathSciNet  Google Scholar 

  21. Sun, G., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator–prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  22. Taylor, R.J.: Predation. Chapman and Hall, New York (1987)

  23. Wang, B., Wang, A., Liu, Y., Liu, Z.: Analysis of a spatial predator–prey model with delay. Nonlinear Dyn. 62, 601–608 (2010)

    Article  MATH  Google Scholar 

  24. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zhang, J., Chen, L., Chen, X.: Persistence and global stability for two-species nonautonomous competition Lotka–Voterra patch-system with time delay. Nonlinear Anal. 37, 1019–1028 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers’ constructive suggestions which have improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Wei.

Additional information

This research is supported by National Natural Science Foundation of China (Nos. 11031002, 11371111) and Research Fund for the Doctoral Program of Higher Education of China (No. 20122302110044).

Appendix: Direction and stability of the Hopf bifurcation

Appendix: Direction and stability of the Hopf bifurcation

In this appendix, we determine the properties of the spatially non-homogeneous periodic solutions found in Theorem 3.2. We calculate \(Re(c_1(b_j))\) for \(j\in (0, N_1]\). We set

$$\begin{aligned}&q := \cos \frac{j}{l}x \left( \begin{array}{ccc} m_j \\ n_j \end{array} \right) =\left( \begin{array}{ccc} 1 \\ \frac{d_2 j^2}{l^2 \theta }-i\frac{\omega _j}{\theta } \end{array} \right) \quad \hbox {and}\\&\quad q* := \cos \frac{j}{l}x \left( \begin{array}{ccc} m_j^* \\ n_j^*\end{array} \right) =\left( \begin{array}{ccc} \frac{1}{l \pi }+\frac{d_2 j^2}{\omega _j l^3 \pi } i \\ \frac{- \theta }{ \omega _j l \pi } i \end{array} \right) , \end{aligned}$$

where \(\omega _j=(\theta C(b_j)-\frac{d_2^2 j^4}{l^4})^{1/2}.\) By straightforward compute, we have

$$\begin{aligned}&[2i\omega _j I-L_{2j}(b_j)]^{-1}\\&\quad =(\alpha _1+\alpha _2 i)^{-1} \left( \begin{array}{ccc} 2i\omega _j+\frac{4d_2j^2}{l^2} &{}\quad -\theta \\ C(b_j) &{}\quad 2i\omega _j-\frac{(d_2-3d_1)j^2}{l^2} \end{array} \right) , \end{aligned}$$

with

$$\begin{aligned}&\alpha _1:=\frac{(12d_1d_2-3d_2^2)j^4-3\omega _0^2l^4}{l^4},\\&\alpha _2:=\frac{6\omega _j(d_1+d_2)j^2}{l^2}, \end{aligned}$$

and

$$\begin{aligned}&[2i\omega _j I-L_{0}(b_j)]^{-1}\\&\quad =(\alpha _3+\alpha _4 i)^{-1} \left( \begin{array}{ccc} 2i\omega _j &{}\quad -\theta \\ C(b_j) &{}\quad 2i\omega _j-\frac{(d_1+d_2)j^2}{l^2} \end{array} \right) , \end{aligned}$$

with

$$\begin{aligned} \alpha _3:=\frac{d_2^2j^4-3\omega _j^2l^4}{l^4},\quad \alpha _4:=-\frac{2\omega _j(d_1+d_2)j^2}{l^2}. \end{aligned}$$

Then we have

$$\begin{aligned} w_{20}&= \frac{1}{2}[2i\omega _jI-L(b_j)]^{-1}\left[ (\cos \frac{2n}{l}x+1)\left( \begin{array}{ccc} c_j\\ d_j \end{array} \right) \right] \\&= \left[ \frac{[2i\omega _jI-L_{2j}(b_j)]^{-1}}{2}\cos \frac{2j}{l}x\right. \\&\quad \left. +\,\frac{[2i\omega _jI-L_{0}(b_j)]^{-1}}{2}\right] \left( \begin{array}{ccc}c_j\\ d_j \end{array} \right) \\&= \frac{(\alpha _1\!+\!\alpha _2 i)^{-1}}{2}\left( \begin{array}{ccc} (2i\omega _j\!+\!\frac{4d_2j^2}{l^2})c_j\!-\!\theta d_j \\ C(b_j)c_j\!+\!(2i\omega _j\!-\!\frac{(d_2-3d_1)j^2}{l^2})d_j \end{array} \right) \cos \frac{2j}{l}x\\&\quad +\,\frac{(\alpha _3+\alpha _4 i)^{-1}}{2}\left( \begin{array}{ccc} 2i\omega _jc_j-\theta d_j \\ C(b_j)c_j+(2i\omega _j-\frac{(d_1+d_2)j^2}{l^2})d_j \end{array} \right) . \end{aligned}$$

Likewise we have

$$\begin{aligned} w_{11}&= -\frac{1}{2}[L(b_j)]^{-1}\left[ (\cos \frac{2n}{l}x+1)\left( \begin{array}{ccc} e_j\\ f_j \end{array} \right) \right] \\&= \frac{\alpha _5^{-1}}{2}\left( \begin{array}{ccc} \frac{4d_2j^2}{l^2}e_j-\theta f_j \\ C(b_j)e_j-\frac{(d_2-3d_1)j^2}{l^2})f_j \end{array} \right) \cos \frac{2j}{l}x\\&\quad -\,\frac{1}{2\theta C(b_j)}\left( \begin{array}{ccc} \theta f_j \\ -C(b_j)e_j+\frac{(d_1+d_2)j^2}{l^2}f_j \end{array} \right) \end{aligned}$$

with \(\alpha _5:=[(12d_1d_2-3d_2^2)j^4+\omega _0^2l^4]/l^4\). From computation, it follows that

$$\begin{aligned}&c_j\!=\!\frac{-2 l^2 p \theta \left( 2 s^2-5 s \theta +4 \theta ^2\right) -4 s (s-\theta )^2 \sqrt{\frac{\theta }{s-\theta }} b_j \left( j^2 d_2-i l^2 \omega _j\right) }{l^2 s^2 \theta },\\&d_j=\frac{2 (s-\theta )}{l^2 s^2 \theta } \left( l^2 p (s-4 \theta ) \theta +\frac{2 s \theta b_j \left( j^2 d_2-i l^2 \omega _j\right) }{\sqrt{\frac{\theta }{s-\theta }}}\right) ,\\&e_j=-\frac{2}{l^2 s^2 \theta } \left( l^2 p \theta \left( 2 s^2-5 s \theta +4 \theta ^2\right) \right. \\&\quad \quad \left. +\,2 j^2 s (s-\theta )^2 \sqrt{\frac{\theta }{s-\theta }} b_j d_2\right) ,\\&f_j=\frac{2 (s-\theta )}{l^2 s^2 \theta } \left( l^2 p (s-4 \theta ) \theta +\frac{2 j^2 s \theta b_j d_2}{\sqrt{\frac{\theta }{s-\theta }}}\right) ,\\&g_j=\frac{2 (s-\theta )^2 b_j}{l^2 s^3 \theta } \left( 12 l^2 p (s-2 \theta ) \theta \sqrt{\frac{\theta }{s-\theta }}\right. \\&\quad \quad \left. -\,s (s-4 \theta ) b_j \left( 3 j^2 d_2-i l^2 \omega _j\right) \right) ,\\&h_j=\frac{2 (s-\theta )^2 b_j}{l^2 s^3 \theta } \left( 12 l^2 p \theta \sqrt{\frac{\theta }{s-\theta }} (-s+2 \theta )\right. \\&\quad \quad \left. +\,s (s-4 \theta ) b_j \left( 3 j^2 d_2-i l^2 \omega _j\right) \right) . \end{aligned}$$

Then we have

$$\begin{aligned}&Q_{w_{20}\overline{q}} \\&=\left( \begin{array}{ccc} f_\mathrm{uu}\xi _1+f_\mathrm{uv}(\xi _1\overline{n_j}+\xi _2)+f_{\mathrm{vv}}\xi _2\overline{n_j} \\ g_\mathrm{uu}\xi _1+g_\mathrm{uv}(\xi _1\overline{n_j}+\xi _2)+g_{\mathrm{vv}}\xi _2\overline{n_j} \end{array} \right) \cos \frac{2j}{l}x \cos \frac{j}{l}x\\&\quad \quad +\left( \begin{array}{l} f_\mathrm{uu}\eta _1+f_\mathrm{uv}(\eta _1\overline{n_j}+\eta _2)+f_{\mathrm{vv}}\eta _2\overline{n_j} \\ g_\mathrm{uu}\eta _1 +g_\mathrm{uv}(\eta _1\overline{n_j}+\eta _2)+g_{\mathrm{vv}}\eta _2\overline{n_j} \end{array} \right) \cos \frac{j}{l}x, \end{aligned}$$

and

$$\begin{aligned}&Q_{w_{11}q} \\&\quad =\left( \begin{array}{l} f_\mathrm{uu}\tau _1+f_\mathrm{uv}(\tau _1\overline{n_j}+\tau _2)+f_{\mathrm{vv}}\tau _2\overline{n_j} \\ g_\mathrm{uu}\tau _1+g_\mathrm{uv}(\tau _1\overline{n_j}+\tau _2)+g_{\mathrm{vv}}\tau _2\overline{n_j} \end{array} \right) \cos \frac{2j}{l}x \cos \frac{j}{l}x\\&\quad \quad +\left( \begin{array}{l} f_\mathrm{uu}\chi _1+f_\mathrm{uv}(\chi _1\overline{n_j}+\chi _2)+f_{\mathrm{vv}}\chi _2\overline{n_j} \\ g_\mathrm{uu}\chi _1+g_\mathrm{uv}(\chi _1\overline{n_j}+\chi _2)+g_{\mathrm{vv}}\chi _2\overline{n_j} \end{array} \right) \cos \frac{j}{l}x, \end{aligned}$$

where

$$\begin{aligned}&\left\{ \begin{array}{ll} f_\mathrm{uu}=-\frac{2 p \left( 2 s^2-5 s \theta +4 \theta ^2\right) }{s^2},&{}\quad f_\mathrm{uv} =-\frac{2 b (s-\theta )^2 \sqrt{\frac{\theta }{s-\theta }}}{s}, \quad f_{\mathrm{vv}}=0,\\ g_\mathrm{uu}=\frac{2 p \left( s^2-5 s \theta +4 \theta ^2\right) }{s^2},&{}\quad g_\mathrm{uv}=\frac{2 b (s-\theta )^2 \sqrt{\frac{\theta }{s-\theta }}}{s}, \quad g_{\mathrm{vv}}=0,\\ \end{array}\right. \end{aligned}$$
(5.1)
$$\begin{aligned}&\left\{ \begin{array}{ll} \xi _1=\xi _{11}+i* \xi _{12}, &{} \xi _2=\xi _{21}+i*\xi _{22},\\ \eta _1=\eta _{11}+i*\eta _{12}, &{} \eta _2=\eta _{21}+i*\eta _{22},\\ \tau _1=\frac{\alpha _5^{-1}}{2}\left( \frac{4d_2j^2}{l^2}e_j-\theta f_j\right) , &{} \tau _2 =\frac{\alpha _5^{-1}}{2}\left( C(b_j)e_j-\frac{(d_2-3d_1)j^2}{l^2}f_j\right) ,\\ \chi _1=-\frac{1}{2C(b_j)}f_j, &{} \chi _2=\frac{1}{2\theta C(b_j)}\left( C(b_j)e_j-\frac{(d_1+d_2)j^2}{l^2}f_j \right) ,\\ \end{array} \right. \end{aligned}$$
(5.2)

and

$$\begin{aligned} \xi _{11}&= \frac{2 j^2 d_2 f_{\mathrm{uv}} \left( 2 j^2 d_2 \alpha _1-l^2 \alpha _2 \omega _j\right) }{l^4 \theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad +\,\frac{\left( f_{\mathrm{uu}}-g_{\mathrm{uv}}\right) \alpha _2 \omega _j}{\alpha _1^2+\alpha _2^2} +\frac{\alpha _1 \left( \theta ^2 g_{\mathrm{uu}}+4 f_{\mathrm{uv}} \omega _j^2\right) }{2 \theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad +\,\frac{j^2 d_2 \left( 2 f_{\mathrm{uu}}+g_{\mathrm{uv}}\right) \alpha _1}{l^2 \left( \alpha _1^2+\alpha _2^2\right) },\\ \xi _{12}&= -\frac{2 j^2 d_2 f_{\mathrm{uv}} \left( 2 j^2 d_2 \alpha _2+l^2 \alpha _1 \omega _j\right) }{l^4 \theta \left( \alpha _1^2+\alpha _2^2\right) }+\frac{\left( f_{\mathrm{uu}}-g_{\mathrm{uv}}\right) \alpha _1 \omega _j}{\alpha _1^2+\alpha _2^2}\\&\quad -\,\frac{\alpha _2 \left( \theta ^2 g_{\mathrm{uu}}+4 f_{\mathrm{uv}} \omega _j^2\right) }{2 \theta \left( \alpha _1^2+\alpha _2^2\right) }-\frac{j^2 d_2 \left( 2 f_{\mathrm{uu}}+g_{\mathrm{uv}}\right) \alpha _2}{l^2 \left( \alpha _1^2+\alpha _2^2\right) },\\ \xi _{21}&= \frac{j^2 \left( 3 d_1-d_2\right) g_{\mathrm{uu}} \alpha _1}{2 l^2 \left( \alpha _1^2+\alpha _2^2\right) } +\frac{j^4 \left( 3 d_1-d_2\right) d_2 g_{\mathrm{uv}} \alpha _1}{l^4 \theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad +\,\frac{\omega _j \left( -C\left( b_j\right) f_{\mathrm{uv}} \alpha _2+2 g_{\mathrm{uv}} \alpha _1 \omega _j\right) }{\theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\frac{C\left( b_j\right) f_{\mathrm{uu}} \alpha _1+2 g_{\mathrm{uu}} \alpha _2 \omega _j}{2 \left( \alpha _1^2+\alpha _2^2\right) }+\frac{3 j^2 \left( -d_1+d_2\right) g_{\mathrm{uv}} \alpha _2 \omega _j}{l^2 \theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad +\,\frac{C\left( b_j\right) j^2 \alpha _1 d_2 f_{\mathrm{uv}}}{l^2 \left( \alpha _1{}^2+\alpha _2{}^2\right) \theta },\\ \xi _{22}&= \frac{j^2 \left( -3 d_1+d_2\right) g_{\mathrm{uu}} \alpha _2}{2 l^2 \left( \alpha _1^2+\alpha _2^2\right) } +\frac{j^4 d_2 \left( -3 d_1+d_2\right) g_{\mathrm{uv}} \alpha _2}{l^4 \theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad -\,\frac{\omega _j \left( C \left( b_j\right) f_{\mathrm{uv}} \alpha _1+2 g_{\mathrm{uv}} \alpha _2 \omega _j\right) }{\theta \left( \alpha _1^2+\alpha _2^2\right) }\\&\quad +\,\frac{3 j^2 \left( -d_1\!+\!d_2\right) g_{\mathrm{uv}} \alpha _1 \omega _j}{l^2 \theta \left( \alpha _1^2 \!+\!\alpha _2^2\right) }\!+\!\frac{-C\left( b_j\right) f_{\mathrm{uu}} \alpha _2\!+\!2 g_{\mathrm{uu}} \alpha _1 \omega _j}{2 \left( \alpha _1^2\!+\!\alpha _2^2\right) }\\&\quad -\,\frac{C\left( b_j\right) j^2 \alpha _2 d_2 f_{\mathrm{uv}}}{l^2 \left( \alpha _1{}^2+\alpha _2{}^2\right) \theta },\\ \eta _{11}&= \frac{\left( f_{\mathrm{uu}}+g_{\mathrm{uv}}\right) \alpha _4 \omega _j}{\alpha _3^2+\alpha _4^2} -\frac{j^2 d_2 \left( \theta g_{\mathrm{uv}} \alpha _3-2 f_{\mathrm{uv}} \alpha _4 \omega _j\right) }{l^2 \theta \left( \alpha _3^2+\alpha _4^2\right) }\\&\quad -\,\frac{\alpha _3 \left( \theta ^2 g_{\mathrm{uu}} -4 f_{\mathrm{uv}} \omega _j^2\right) }{2 \theta \left( \alpha _3^2+\alpha _4^2\right) },\\ \eta _{12}&= \frac{\left( f_{\mathrm{uu}}+g_{\mathrm{uv}}\right) \alpha _3 \omega _j}{\alpha _3^2+\alpha _4^2} +\frac{\alpha _4 \left( \theta ^2 g_{\mathrm{uu}}-4 f_{\mathrm{uv}} \omega _j^2\right) }{2 \theta \left( \alpha _3^2 +\alpha _4^2\right) }\\&\quad +\,\frac{j^2 d_2 \left( \theta g_{\mathrm{uv}} \alpha _4 +2 f_{\mathrm{uv}} \alpha _3 \omega _j\right) }{l^2 \theta \left( \alpha _3^2+\alpha _4^2\right) }, \end{aligned}$$
$$\begin{aligned} \eta _{21}&= \frac{\omega _j \left( -C\left( b_j\right) f_{\mathrm{uv}} \alpha _4 +2 g_{\mathrm{uv}} \alpha _3 \omega _j\right) }{\theta \left( \alpha _3^2+\alpha _4^2\right) } \\&\quad +\,\frac{C\left( b_j\right) f_{\mathrm{uu}} \alpha _3+2 g_{\mathrm{uu}} \alpha _4 \omega _j}{2 \left( \alpha _3^2 +\alpha _4^2\right) }+\frac{C\left( b_j\right) j^2 \alpha _3 d_2 f_{\mathrm{uv}}}{l^2 \left( \alpha _3{}^2+\alpha _4{}^2\right) \theta }\\&\quad -\,\frac{j^2 \left( d_1+d_2\right) g_{\mathrm{uu}} \alpha _3}{2 l^2 \left( \alpha _3^2+\alpha _4^2\right) } -\frac{j^4 d_2 \left( d_1+d_2\right) g_{\mathrm{uv}} \alpha _3}{l^4 \theta \left( \alpha _3^2+\alpha _4^2\right) } \\&\quad +\,\frac{j^2 \left( d_1+3 d_2\right) g_{\mathrm{uv}} \alpha _4 \omega _j}{l^2 \theta \left( \alpha _3^2+\alpha _4^2\right) },\\ \eta _{22}&= -\frac{\omega _j \left( C\left( b_j\right) f_{\mathrm{uv}} \alpha _3+2 g_{\mathrm{uv}} \alpha _4 \omega _j\right) }{\theta \left( \alpha _3^2+\alpha _4^2\right) }\\&\quad +\,\frac{-C\left( b_j\right) f_{\mathrm{uu}} \alpha _4+2 g_{\mathrm{uu}} \alpha _3 \omega _j}{2 \left( \alpha _3^2+\alpha _4^2\right) }-\frac{C\left( b_j\right) j^2 \alpha _4 d_2 f_{\mathrm{uv}}}{l^2 \left( \alpha _3{}^2+\alpha _4{}^2\right) \theta }\\&\quad +\,\frac{j^2 \left( d_1+d_2\right) g_{\mathrm{uu}} \alpha _4}{2 l^2 \left( \alpha _3^2+\alpha _4^2\right) }+\frac{j^4 d_2 \left( d_1+d_2\right) g_{\mathrm{uv}} \alpha _4}{l^4 \theta \left( \alpha _3^2+\alpha _4^2\right) }\\&\quad +\,\frac{j^2 \left( d_1+3 d_2\right) g_{\mathrm{uv}} \alpha _3 \omega _j}{l^2 \theta \left( \alpha _3^2+\alpha _4^2\right) }. \end{aligned}$$

Notice that for any \(j\in \text{ N }\),

$$\begin{aligned}&\int _{0}^{l\pi } \cos ^2\frac{jx}{l} dx=\frac{1}{2}l\pi ,\\&\int _{0}^{l\pi } \cos \frac{2jx}{l} \cos ^2\frac{jx}{l} dx =\frac{1}{4}l\pi ,\\&\int _{0}^{l\pi } \cos ^4\frac{jx}{l} dx=\frac{3}{8}l\pi , \end{aligned}$$

we have

$$\begin{aligned} <q^*,Q_{w_{20\overline{q}}}>&= \frac{l\pi }{4}\overline{m_j^*}((f_\mathrm{uu}\xi _1+f_\mathrm{uv}(\xi _1\overline{n_j}+\xi _2))\\&\quad +\,\overline{n_j^*}(g_\mathrm{uu}\xi _1+g_\mathrm{uv}(\xi _1\overline{n_j}+\xi _2)))\\&\quad +\,\frac{l\pi }{2}\overline{m_j^*}((f_\mathrm{uu}\eta _1+f_\mathrm{uv}(\eta _1\overline{n_j}+\eta _2))\\&\quad +\,\overline{n_j^*}(g_\mathrm{uu}\eta _1+g_\mathrm{uv}(\eta _1\overline{n_j}+\eta _2))),\\ <q^*,Q_{w_{11q}}>&= \frac{l\pi }{4}\overline{m_j^*}((f_\mathrm{uu}\tau _1+f_\mathrm{uv}(\tau _1n_j+\tau _2))\\&\quad +\,\overline{n_j^*}(g_\mathrm{uu}\tau _1+g_\mathrm{uv}(\tau _1n_j+\tau _2)))\\&\quad +\,\frac{l\pi }{2}\overline{m_j^*}((f_\mathrm{uu}\chi _1+f_\mathrm{uv}(\chi _1n_j+\chi _2))\\&\quad +\,\overline{n_j^*}(g_\mathrm{uu}\chi _1+g_\mathrm{uv}(\chi _1n_j+\chi _2))),\\ <q^*,C_{w_{qq\overline{q}}}>&= \frac{3l\pi }{8}(\overline{m_j^*}g_j+\overline{n_j^*}h_j). \end{aligned}$$

When \(j\in \text{ N }\), it follows that \(<q^*,Q_{qq}>=<q^*,Q_{q\overline{q}}>=0\). Thus we have

$$\begin{aligned} Re(c_1(b_j))&= \frac{3}{16} \left( f_{\mathrm{uuu}}+g_{\mathrm{uuv}}+\frac{2 j^2 d_2 f_{\mathrm{uuv}}}{l^2 \theta }\right) \\&\quad +\,\frac{\left( 2 \eta _{12}+\xi _{12}\right) }{8 l^2 \pi \omega _j}\left( j^2 \pi d_2 f_{\mathrm{uu}} -l \theta \left( f_{\mathrm{uv}}+l \pi g_{\mathrm{uu}}\right) \right) \\&\quad +\,\frac{\left( 2 \eta _{22}+\xi _{22}\right) }{8 l^2 \omega _j}\left( j^2 d_2 f_{\mathrm{uv}} -l^2 \theta g_{\mathrm{uv}}\right) \\&\quad +\,\frac{1}{8} f_{\mathrm{uv}} \left( 2 \eta _{21}+\xi _{21}+2 \tau _2+4 \chi _2\right) \\&\quad +\,\frac{1}{8} \left( 2 \eta _{11}+\xi _{11}+2 \tau _1+4 \chi _1\right) \left( f_{\mathrm{uu}} \right. \\&\quad \left. +\,\frac{\theta \left( j^2 d_2 f_{\mathrm{uv}}-l^2 \theta g_{\mathrm{uv}}\right) }{l^3 \pi \omega _j^2}\right) . \end{aligned}$$

Thus the bifurcating periodic solution is supercritical (resp. subcritical) if \(c_1(b_j)<0\) (resp. \(>0\)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Wei, J. Stability and bifurcation analysis of a diffusive prey–predator system in Holling type III with a prey refuge. Nonlinear Dyn 79, 631–646 (2015). https://doi.org/10.1007/s11071-014-1691-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1691-8

Keywords

Navigation