Skip to main content
Log in

Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel interval type-2 fuzzy-neural network indirect adaptive sliding mode control (SMC) approach (T2FNNAS) for a suspension system including actuator dynamics. It is equipped with a novel moving sliding surface in which the slope and intercept of sliding surface are simultaneity adjusted by adaptive interval T2FNN to improve controller robustness against system uncertainties and unknown disturbances. As a result, the drawbacks of the conventional SMC, such as chattering effect and a required priori knowledge of the bounds of uncertainties, are removed. Based on the Lyapunov synthesis approach, the free parameters of the adaptive FNN are tuned on-line. One advantage of the proposed approach is that, by incorporating the Lyapunov design approach and SMC method into the adaptive fuzzy-neural control scheme to derive the control law, the proposed approach not only assures closed-loop stability but also achieves a good performance for the overall system. Another advantage of the proposed method is that to relax the requirement for the bound of approximation error, and an estimation mechanism is also employed to observe the bound of it real time. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is position controller that use T2FNNAS. Finally, a comparison between the proposed approach and a robust model reference adaptive control approach is provided. Simulation results confirm that the proposed approach effectively improves both the passenger comfort and the ride quality of the car.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Chen, H.-Y., Huang, S.-J.: A new model-free adaptive sliding controller for active suspension system. Int. J. Syst. Sci. 39(1), 57–69 (2008)

    Article  MATH  Google Scholar 

  2. Chen, H., Guo, K.-H.: Constrained \(\text{ H }^\infty \) control of active suspensions: an LMI approach. Control Syst. Technol. IEEE Trans. 13(3), 412–421 (2005)

    Article  Google Scholar 

  3. Karnopp, D.: Theoretical limitations in active vehicle suspensions. Veh. Syst. Dyn. 15(1), 41–54 (1986)

    Article  Google Scholar 

  4. Fateh, M.M., Zirkohi, M.M.: Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation. Veh. Syst. Dyn. 49(12), 1951–1965 (2011)

    Article  Google Scholar 

  5. Lin, J.-S., Kanellakopoulos, I.: Nonlinear design of active suspensions. Control Syst. IEEE. 17(3), 45–59 (1997)

    Article  Google Scholar 

  6. Shen, X., Peng, H., Abe M.: Analysis of active suspension systems with hydraulic actuators. In: The Dynamics of Vehicles on Roads and on Tracks Supplement to Vehicle System Dynamics: Proceedings Of The 18th Iavsd Symposium Held In Kanagawa, Japan August 24–30, 2003, CRC Press (2005)

  7. Hrovat, D.: Survey of advanced suspension developments and related optimal control applications. Automatica 33(10), 1781–1817 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lin, J.-S., Kanellakopoulos, I.: Nonlinear design of active suspensions. IEEE Control Syst. Mag. 17, 45–49 (1995)

    Google Scholar 

  9. Corona, D., Giua, A., Seatzu, C.: Optimal control of hybrid automata: design of a semiactive suspension. Control Eng. Pract. 12(10), 1305–1318 (2004)

    Article  Google Scholar 

  10. Sohn, H.-C., et al.: An adaptive LQG control for semi-active suspension systems. Int. J. Veh. Des. 34(4), 309–326 (2004)

    Article  Google Scholar 

  11. Swevers, J., et al.: A model-free control structure for the on-line tuning of the semi-active suspension of a passenger car. Mech. Syst. Signal Process. 21(3), 1422–1436 (2007)

    Article  Google Scholar 

  12. Karnopp, D.: Theoretical limitations in active suspensions. Veh. Syst. Dyn. 15, 41–54 (1986)

    Article  Google Scholar 

  13. Sharkawy, A.: Fuzzy and adaptive fuzzy control for the automobiles’ active suspension system. Veh. Syst. Dyn. 43(11), 795–806 (2005)

    Article  Google Scholar 

  14. D’Amato, F.J., Viassolo, D.E.: Fuzzy control for active suspensions. Mechatronics 10(8), 897–920 (2000)

    Article  Google Scholar 

  15. Wang, L.-X.: Stable adaptive fuzzy control of nonlinear systems. Fuzzy Syst. IEEE Trans. 1(2), 146–155 (1993)

    Article  Google Scholar 

  16. Lin, T.-C.: Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(12), 4084–4099 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10(2), 117–127 (2002)

    Article  Google Scholar 

  18. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. Fuzzy Syst. IEEE Trans. 12(4), 524–539 (2004)

    Article  Google Scholar 

  19. Yager, R.R.: Fuzzy subsets of type II in decisions. Cybern. Syst. 10(1–3), 137–159 (1980)

    MathSciNet  Google Scholar 

  20. Lin, T.-C., Chen, M.-C., Roopaei, M.: Synchronization of uncertain chaotic systems based on adaptive type-2 fuzzy sliding mode control. Eng. Appl. Artif. Intell. 24(1), 39–49 (2011)

    Article  Google Scholar 

  21. Majid, Moradi Zirkohi, Fateh, M.M., Shoorehdeli, M.A.: Type-2 fuzzy control for a flexible-joint robot using voltage control strategy. Int. J. Autom. Comput. 10(3), 242–255 (2013)

    Article  Google Scholar 

  22. Hsiao, M.-Y., et al.: Design of interval type-2 fuzzy sliding-mode controller. Inf. Sci. 178(6), 1696–1716 (2008)

    Article  MATH  Google Scholar 

  23. Pang, H.-P., Liu, C.-J., Zhang W: Sliding mode fuzzy control with application to electrical servo drive. In: Intelligent Systems Design and Applications, 2006. ISDA’06. Sixth International Conference on. 2006: IEEE

  24. Kaynak, O., Erbatur, K., Ertugnrl, M.: The fusion of computationally intelligent methodologies and sliding-mode control—a survey. Ind. Electron. IEEE Trans. 48(1), 4–17 (2001)

    Article  Google Scholar 

  25. Ha, Q.P., Rye, D.C., Durrant-Whyte, H.F.: Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35(4), 607–616 (1999)

    Article  MATH  Google Scholar 

  26. Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (2003)

    Article  Google Scholar 

  27. Slotine, J.J., Sastry, S.S.: Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators\({^\dagger }\). Int. J. Control 38(2), 465–492 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  28. Chantranuwathana, S., Peng H: Practical adaptive robust controllers for active suspensions. Digital Library 7 (2000)

  29. Alleyne, A., Hedrick, J.K.: Nonlinear adaptive control of active suspensions. Control Syst. Technol. IEEE Trans. 3(1), 94–101 (1995)

    Article  Google Scholar 

  30. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. Fuzzy Syst. IEEE Trans. 8(5), 535–550 (2000)

    Article  Google Scholar 

  31. Karnik, N.N., Mendel, J.M.: Centroid of a type-2 fuzzy set. Inf. Sci. 132(1), 195–220 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Chen, P.-C., Huang, A.-C.: Adaptive sliding control of active suspension systems with uncertain hydraulic actuator dynamics. Veh. Syst. Dyns. 44(5), 357–368 (2006)

    Article  Google Scholar 

  33. Choi, S.-B., Cheong, C.-C., Park, D.-W.: Moving switching surfaces for robust control of second-order variable structure systems. Int. J. Control 58(1), 229–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Park, D.-W., Choi, S.-B.: Moving sliding surfaces for high-order variable structure systems. Int. J. Control 72(11), 960–970 (1999)

  35. Wai, R.-J., Lin, C.-M., Hsu, C.-F.: Adaptive fuzzy sliding-mode control for electrical servo drive. Fuzzy Sets Syst. 143(2), 295–310 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control, vol. 199. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  37. Yagiz, N., Hacioglu, Y.: Robust control of a spatial robot using fuzzy sliding modes. Math. Comput. Model. 49(1), 114–127 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. Maleki, N., Sedigh, A., Labibi B: Robust model reference adaptive control of active suspension system. In: Control and Automation, 2006. MED’06. 14th Mediterranean Conference on. 2006: IEEE

Download references

Acknowledgments

The first author gratefully appreciates the support of the Behbahan Khatam Alanbia University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Moradi Zirkohi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zirkohi, M.M., Lin, TC. Interval type-2 fuzzy-neural network indirect adaptive sliding mode control for an active suspension system. Nonlinear Dyn 79, 513–526 (2015). https://doi.org/10.1007/s11071-014-1683-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1683-8

Keywords

Navigation