Skip to main content
Log in

Analytical soliton solutions for the cubic–quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the Kundu–Eckhaus equation with variable coefficients, the exact one-soliton and two-soliton solutions have been explicitly given by an appropriate similarity transformation method. As an example, an exponential distributed fiber control system, nonlinearity management system and dispersion management system have been considered, and the propagation characteristics of the exact soliton solutions in the three nonuniform management systems have been investigated in detail. Especially, the dynamic properties of the amplitude, pulse width and the central position of the soliton with transmission distance have been studied. The results have some guiding significance for soliton amplification, compression and control management, and can provide some theoretical analysis for carrying out optical soliton communication experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., Morris, H.C.: Solitons and Nonlinear Wave Equations. Academic Press, New York (1982)

  2. Abdullaev, F.Kh., Gammal, A., Tomio, L., Frederico, T.: Stability of trapped Bose–Einstein condensates. Phys. Rev. A 63, 043604 (2001)

  3. Gatz, S., Herrmann, J.: Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt. Lett. 17, 484–486 (1992)

    Article  Google Scholar 

  4. Gedalin, M., Scott, T.C., Band, Y.B.: Optical solitary waves in the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 78, 448–451 (1997)

    Article  Google Scholar 

  5. Pushkarov, D.I., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354–364 (1996)

    Article  Google Scholar 

  6. Skarka, V., Berezhiani, V.I., Miklaszewski, R.: Spatiotemporal soliton propagation in saturating nonlinear optical media. Phys. Rev. E 56, 1080–1087 (1997)

    Article  Google Scholar 

  7. Soto-Crespo, J.M., Pesquera, L.: Analytical approximation of the soliton solutions of the quintic complex Ginzburg–Landau equation. Phys. Rev. E. 56, 7288–7293 (1997)

    Article  Google Scholar 

  8. Sarma, A.K.: Solitary wave solutions of higher-order NLSE with Raman and self-steepening effect in a cubic–quintic–septic medium. Commun. Nonlinear Sci. Numer. Simul. 14, 3215–3219 (2009)

    Article  Google Scholar 

  9. Goyal Alka, A., Gupta, R., Kumar, C.N., Raju, T.S.: Chirped femtosecond solitons and double-kink solitons in the cubic–quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84, 0638309 (2011)

    Google Scholar 

  10. Kundu, A.: Landau–Lifeshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger equation-type equations. J. Math. Phys. 25, 3433–3438 (1984)

    Article  MathSciNet  Google Scholar 

  11. Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDES and their integrability: I. Inverse Prob. 3, 229–262 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Clarkson, P.A., Tuszynski, J.A.: Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems near criticality. J. Phys. A 23, 4269–4288 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Abdullaeev, F.: Theory of Solitons in Inhomogeneous Media. Wiley, NewYork (1994)

    Google Scholar 

  14. Yamazaki, R., Taie, S., Sugawa, S., Takahashi, Y.: Submicron spatial modulation of an interatomic interaction in a Bose–Einstein condensate. Phys. Rev. Lett. 105, 050405 (2010)

    Article  Google Scholar 

  15. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic–quintic Schrodinger equation model. Proc. SPIE Int. Soc. Opt. Eng. 4271, 292–302 (2001)

    Google Scholar 

  16. Hao, R.Y., Li, L., Li, Z.H., Yang, R.C., Zhou, G.S.: A new way to exact quasi-soliton solutions and soliton interaction for the cubic–quintic nonlinear Schrödinger equation with variable coefficients. Opt. Commun. 245, 383–390 (2005)

    Article  Google Scholar 

  17. He, J.D., Zhang, J.F., Zhang, M.Y., Dai, C.Q.: Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients. Opt. Commun. 285, 755–760 (2012)

    Article  Google Scholar 

  18. Tang, X.Y., Shukla, P.K.: Solution of the one-dimensional spatially inhomogeneous cubic–quintic nonlinear Schrödinger equation with an external potential. Phys. Rev. A 76, 013612 (2007)

    Article  MathSciNet  Google Scholar 

  19. Yang, Q., Zhang, J.F.: Optical quasi-soliton solutions for the cubic–quintic nonlinear Schrödinger equation with variable coefficients. Int. J. Mod. Phys. B 19, 4629–4636 (2005)

    Article  MATH  Google Scholar 

  20. Qi, F.H.: Symbolic computation on the integrable analysis of certain nonlinear models. Ph.D. dissertation, Beijing University of Posts and Telecommunications (2012)

  21. Qi, F.H., Ju, H.M., Meng, X.H., Li, Y.: Conservation laws and Darboux transformation for the coupled cubic–quintic nonlinear Schrödinger equations with variable coefficients in nonlinear optics. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1382-5

  22. Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)

    Article  Google Scholar 

  23. Facão, M., Carvalho, M.I., Parker, D.F.: Soliton self-frequency shift: self-similar solutions and their stability. Phys. Rev. E 81, 046604 (2010)

    Article  MathSciNet  Google Scholar 

  24. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V.E., Konotop, V.V.: Localized nonlinear waves in systems with time- and space-modulated nonlinearities. Phys. Rev. Lett. 100, 164102 (2008)

    Article  Google Scholar 

  25. Wang, P., Shang, T., Feng, L., Du, Y.J.: Solitons for the cubic–quintic nonlinear Schrödinger equation with Raman effect in nonlinear optics. Opt. Quant. Electron. (2013). doi:10.1007/s11082-013-9840-8

  26. Hao, R.Y., Li, L., Li, Z.H.: Exact multisoliton solutions of the higher-order nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 70, 066603 (2004)

    Article  Google Scholar 

  27. Serkin, V.N., Hasegawa, A.: Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion managements. IEEE J. Sel. Top. Quantum Electron. 8, 418–431 (2002)

    Article  Google Scholar 

  28. Yang, Z.Y., Zhang, L.C.: Snakelike nonautonomous solitons in a graded-index grating waveguide. Phys. Rev. A 81, 043826 (2010)

    Article  Google Scholar 

  29. Moores, J.D.: Nonlinear compression of chirped solitary waves with and without phase modulation. Opt. Lett. 21, 555–557 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Nature Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JM8340), the China Postdoctoral Science Special Foundation (Grant No. 201104659), the China Postdoctoral Science Foundation (Grant No. 20100481322), the Foundation of State Key Lab on Integrated Service Networks (Grant No. ISN1003006), the Fundamental Research Funds for the Central Universities (Grant No. NSIY041404), and 111 Project of China (B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Feng, L., Shang, T. et al. Analytical soliton solutions for the cubic–quintic nonlinear Schrödinger equation with Raman effect in the nonuniform management systems. Nonlinear Dyn 79, 387–395 (2015). https://doi.org/10.1007/s11071-014-1672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1672-y

Keywords

Navigation