Skip to main content
Log in

Second-order terminal sliding mode control for networks synchronization

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a second-order terminal sliding mode controller for outer synchronization of a class of complex networks with disturbances. This control scheme adopts a hierarchical control structure to reduce the numbers of controllers. The multivariable error systems were decomposed into two subsystems, a controllable nonlinear subsystem and a linear subsystem. The proposed terminal sliding mode controller was only designed for the nonlinear subsystem. The linear subsystem is set to appropriate sliding mode parameters to implement synchronization. This approach possesses the features of less controllers, faster convergence and higher tracking precision. The performance of the control strategy is evaluated through the control of the complex networks consisting of \(N\) identical Rössler systems. Simulation results demonstrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  2. Razminia, A., Baleanu, D.: Complete synchronization of commensurate fractional order chaotic systems using sliding mode control. Mechatronics 23(7), 873–879 (2013)

    Article  Google Scholar 

  3. Lunze, J., Lehmann, D.: A state-feedback approach to event-based control. Automatica 46(1), 211–215 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Zhang, Q., Luo, J., Wan, L.: Parameter identification and synchronization of uncertain general complex networks via adaptive-impulsive control. Nonlinear Dyn. 71(1–2), 353–359 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, M., Ge, S.S., How, B.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities neural networks. IEEE Trans. 21(5), 796–812 (2010)

    Google Scholar 

  6. Gjonaj, B., Aulbach, J., Johnson, P.M., Mosk, A.P., Kuipers, L.: Active spatial control of plasmonic fields. Nat. Photonics 5(6), 360–363 (2011)

    Article  Google Scholar 

  7. Xia, W., Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control. Chaos 19(1), 013120–8 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ahn, C.K.: Output feedback H\(\infty \) synchronization for delayed chaotic neural networks. Nonlinear Dyn. 59, 319–327 (2010)

    Article  MATH  Google Scholar 

  9. Emelyanov, S.V.: Control of first order delay systems by mean of anastatic controller and nonlinear correction. Autom. Remote Control 20(8), 983–991 (1959)

    MathSciNet  Google Scholar 

  10. Utkin, V.: Variable structure systems with sliding modes. Autom. Control IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fang, L., Li, T., Li, Z., Li, R.: Adaptive terminal sliding mode control for anti-synchronization of uncertain chaotic systems. Nonlinear Dyn. 74(4), 991–1002 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lü, L., Li, C., Chen, L.: Projective synchronization of the small-world delayed network with uncertainty. Nonlinear Dyn. 76(2), 1633–1640 (2014)

  13. Gao, Z., Liao, X.: Integral sliding mode control for fractional-order systems with mismatched uncertainties. Nonlinear Dyn. 72(1–2), 27–35 (2013)

  14. Zhang, J., Shi, P., Xia, Y.: Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties. IEEE Trans. Fuzzy Syst. 18(4), 700–711 (2010)

    Article  Google Scholar 

  15. Sun, H., Li, S., Sun, C.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn. 73(1–2), 229–244 (2013)

    Article  MATH  Google Scholar 

  16. Yang, J., Li, S., Yu, X.: Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  MathSciNet  Google Scholar 

  17. Huang, J., Sun, L., Han, Z., Liu, L.: Adaptive terminal sliding mode control for nonlinear differential inclusion systems with disturbance. Nonlinear Dyn. 72(1–2), 221–228 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feng, Y., Yu, X., Han, F.: On nonsingular terminal sliding-mode control of nonlinear systems. Automatica 49(6), 1715–1722 (2013)

    Article  MathSciNet  Google Scholar 

  19. Lü, L., Yu, M., Li, C., Liu, S., Yan, B., Chang, H., Zhou, J., Liu, Y.: Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dyn. 73(1–2), 411–416 (2013)

    Article  MATH  Google Scholar 

  20. Yang, J., Li, S., Su, J., Yu, X.: Continuous nonsingular terminal sliding mode control for systems with mismatched disturbances. Automatica 49(7), 2287–2291 (2013)

    Article  MathSciNet  Google Scholar 

  21. Feng, Y., Han, X., Wang, Y., Yu, X.: Second-order terminal sliding mode control of uncertain multivariable systems. Int. J. Control 80(6), 856–862 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mondal, S., Mahanta, C.: Adaptive second order terminal sliding mode controller for robotic manipulators. J. Franklin Inst. 351(4), 2356–2377 (2013)

    Article  MathSciNet  Google Scholar 

  23. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Article  Google Scholar 

  24. Lu, J., Yu, X., Chen, G., Cheng, D.: Characterizing the synchronizability of small-world dynamical networks. IEEE Trans. Circ Syst. I 51(4), 787–796 (2004)

    Article  MathSciNet  Google Scholar 

  25. Xiang, W., Huangpu, Y.: Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties. Commun. Nonlinear Sci. Numer. Simul. 15(11), 3241–3247 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, H., Han, Z., Xie, Q.Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Polyakov, A., Poznyak, A.: Lyapunov function design for finite-time convergence analysis: “Twisting” controller for second-order sliding mode realization. Automatica 45(2), 444–448 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4–6), 341–346 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Program of National Natural Science of China (No. 11232009) and Shanghai Leading Academic Discipline Project (No. S30106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Qun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Chen, LQ. Second-order terminal sliding mode control for networks synchronization. Nonlinear Dyn 79, 205–213 (2015). https://doi.org/10.1007/s11071-014-1657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1657-x

Keywords

Navigation