Skip to main content
Log in

Local bifurcation analysis and ultimate bound of a novel 4D hyper-chaotic system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new four-dimensional smooth quadratic autonomous hyper-chaotic system which can generate novel two double-wing periodic, quasi-periodic and hyper-chaotic attractors. The Lyapunov exponent spectrum, bifurcation diagram and phase portrait are provided. It is shown that this system has a wide hyper-chaotic parameter. The pitchfork bifurcation and Hopf bifurcation are discussed using the center manifold theory. The ellipsoidal ultimate bound of the typical hyper-chaotic attractor is observed. Numerical simulations are given to demonstrate the evolution of the two bifurcations and show the ultimate boundary region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rössler, O.E.: An equation for hyperchaos. Phys. Lett. A 71, 155–157 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  2. Smaoui, N., Karouma, A., Zribi, M.: Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16, 3279–3293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wu, X., Bai, C., Kan, H.: A new color image cryptosystem via hyperchaos synchronization. Commun. Nonlinear Sci. Numer. Simul. 19, 1884–1897 (2014)

    Article  Google Scholar 

  4. Li, Y., Tang, W.K.S., Chen, G.: Hyperchaos evolved from the generalized Lorenz equation. Int. J. Circuit Theory Appl. 33, 235–251 (2005)

    Article  MATH  Google Scholar 

  5. Wang, J., Chen, Z., Chen, G., Yuan, Z.: A novel hyperchaotic system and its complex dynamics. Int. J. Bifurc. Chaos 18, 3309–3324 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Pang, S., Liu, Y.: A new hyperchaotic system from the Lü system and its control. J. Comp. Appl. Math. 235, 2775–2789 (2011)

  7. Dong, E.-Z., Chen, Z.-Q., Chen, Z.-P., Ni, J.-Y.: Pitchfork bifurcation and circuit implementation of a novel Chen hyper-chaotic system. Chin. Phys. B 21(3), 030501 (2012)

    Article  Google Scholar 

  8. Xue, W., Qi, G.-Y., Mu, J.-J., Jia, H.-Y., Guo, Y.-L.: Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system. Chin. Phys. B 22(8), 080504 (2013)

    Article  Google Scholar 

  9. Li, C.-L., Xiong, J.-B., Li, W.: A new hyperchaotic system and its generalized synchronization. Optik 125, 575–579 (2014)

    Article  Google Scholar 

  10. Wei, Z., Wang, R., Liu, A.: A new finding of the existence of hidden hyperchaotic attractors with no equilibria. Math. Comput. Simul. 100, 13–23 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  12. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465–1466 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lü, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurc. Chaos 12, 659–661 (2002)

    Article  MATH  Google Scholar 

  14. Qi, G., Chen, G., Du, S., Chen, Z., Yuan, Z.: Analysis of a new chaotic system. Phys. A 352, 295–308 (2005)

    Article  Google Scholar 

  15. Qi, G.Y., Van Wyk, M.A., Van Wyk, B.J., Chen, G.R.: On a new hyperchaotic system. Phys. Lett. A 372, 124–136 (2008)

  16. Cang, S., Qi, G., Chen, Z.: A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system. Nonlinear Dyn. 59, 515–527 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, Z., Cang, S., Ochola, E.O., Sun, Y.: A hyperchaotic system without equilibrium. Nonlinear Dyn. 69, 531–537 (2012)

    Article  MathSciNet  Google Scholar 

  18. Zhang, J., Tang, W.: A novel bounded 4D chaotic system. Nonlinear Dyn. 67, 2455–2465 (2012)

    Article  MATH  Google Scholar 

  19. Wu, W.-J., Chen, Z.-Q., Yuan, Z.-Z.: Local bifurcation analysis of a four-dimensional hyperchaotic system. Chin. Phys. B 17(07), 2420–2432 (2008)

    Article  Google Scholar 

  20. Li, X., Wang, P.: Hopf bifurcation and heteroclinic orbit in a 3D autonomous chaotic system. Nonlinear Dyn. 73, 621–632 (2013)

  21. Deng, K., Yu, S.: Hopf bifurcation analysis of a new modified hyperchaotic Lü system. Optik 124, 6265–6269 (2013)

    Article  Google Scholar 

  22. Li, D., Lu, J., Wu, X., Chen, G.: Estimating the ultimate bound and positively invariant set of the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323, 844–853 (2006)

  23. Li, D., Wu, X., Lu, J.: Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system. Chaos Solitons Fractals 39, 1290–1296 (2009)

  24. Wang, P., Li, D., Hu, Q.: Bounds of the hyper-chaotic Lorenz–Stenflo system. Commun. Non. Sci. Numer. Simul. 15, 2514–2520 (2010)

  25. Zhang, F., Mu, C., Li, X.: On the boundness of some solutions of the Lü system. Int. J. Bifurc. Chaos 22, 1250015–1250050 (2012)

    Article  MathSciNet  Google Scholar 

  26. Zhang, F., Mi, C., Wang, L., Wang, X., Yao, X.: Estimations for ultimate boundary of a new hyperchaotic system and its simulation. Nonlinear Dyn. 75, 529–537 (2014)

    Article  MATH  Google Scholar 

  27. Wang, P., Li, D., Wu, X., Lü, J., Yu, X.: Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems. Int. J. Bifurc. Chaos 21, 2679–2694 (2011)

    Article  MATH  Google Scholar 

  28. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, pp. 200–253. Springer, New York (1990)

  29. Lü, J., Chen, G., Cheng, D.: A new chaotic system and beyond: the generalized Lorenz-like system. Int. J. Bifurc. Chaos 14, 1507–1537 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China through Grant No. 11102226, the Fundamental Research Funds for the Central Universities through Grant Nos. ZXH2010D011, ZXH2012B003 and ZXH2012K002 and the Scientific Research Foundation of Civil Aviation University of China through Grant No. 07QD05X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiezhi Wang.

Appendices

Appendix A: The derivation of Theorem 1

The corresponding eigenvectors are

$$\begin{aligned} v_{1}&= \left[ \begin{array}{ c } e-ad \\ -ad\\ 0\\ 0 \end{array} \right] , v_{2}=\left[ \begin{array}{ c } 0\\ 0\\ 1\\ 0 \end{array} \right] ,\nonumber \\ v_{3}&= \left[ \begin{array}{ c } \frac{r_{1}}{2}\\ \frac{ade}{ad-e}\\ 0\\ -\frac{r_{1}}{r_{3}}\cdot \frac{ade}{ad-e} \end{array} \right] , v_{4}=\left[ \begin{array}{ c } \frac{r_{2}}{2}\\ \frac{ade}{ad-e}\\ 0\\ -\frac{r_{2}}{r_{4}}\cdot \frac{ade}{ad-e} \end{array} \right] , \end{aligned}$$
(18)

where \(r_{1}=e-a-d+\Delta ,r_{2}=e-a-d-\Delta ,\) \(r_{3}=d-e-a+\Delta \) and \(r_{4}=d-e-a-\Delta .\)

According to [28], let

$$\begin{aligned} b=\varepsilon +\frac{ade}{ad-e} \end{aligned}$$
(19)

and \(T=[v_{1},v_{2},v_{3},v_{4}].\) Now, consider the transformation

$$\begin{aligned} (x,y,z,w)^{T}=T(x_{1},x_{2},x_{3},x_{4})^{T}. \end{aligned}$$
(20)

Apply (19) and (20) to transform system (1) into

$$\begin{aligned} \left[ \begin{array}{c} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4} \end{array} \right]&= \left[ \begin{array}{cccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad -c &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \frac{-(a+d+e)+\Delta }{2} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{-(a+d+e)-\Delta }{2} \end{array} \right] \nonumber \\&\times \left[ \begin{array}{c} x_{1}\\ x_{2}\\ x_{3}\\ x_{4} \end{array} \right] + \left[ \begin{array}{c} g_{1}\\ g_{2}\\ g_{3}\\ g_{4} \end{array} \right] ,\\ \dot{\varepsilon }&= 0 \nonumber , \end{aligned}$$
(21)

where

$$\begin{aligned} g_{1}&= \frac{1}{(a+e+d)^{2}-\Delta ^{2}}\left( (ad-e)x_{1}x_{2}\right. \\&\left. \quad -\,\frac{r_{1}}{2}x_{2}x_{3}-\frac{r_{2}}{2}x_{2}x_{4} +(ad-e)x_{1}\varepsilon \right. \\&\left. \quad -\,\frac{r_{1}}{2} x_{3} \varepsilon -\frac{r_{2}}{2}x_{4}\varepsilon \right) ,\\ g_{2}&= ad\left( (e-ad)x_{1}^{2}+\left( e+\frac{r_{1}}{2}\right) x_{1} x_{3}+ex_{1}x_{4}\right. \\&\left. \quad -\,\frac{er_{1}}{2(ad-e)}x_{3}^{2} -\frac{e(r_{1}+r_{2})}{2(ad-e)}x_{3}x_{4}+\frac{r_{2}}{2}x_{1}x_{4}\right. \\&\left. \quad -\,\frac{er_{2}}{2(ad-e)}x_{4}^{2}\right) ,\\ g_{3}&= \frac{(e-ad)(4de-r_{2}r_{4})r_{3}}{2ade\cdot \Delta ((a+d+e)^{2} -\Delta ^{2})}\left( (ad-e)x_{1}x_{2}\right. \\&\left. \quad -\,\frac{r_{1}}{2}x_{2}x_{3}-\frac{r_{2}}{2}x_{2}x_{4}\right. \\&\left. \quad +\,(ad-e)x_{1}\varepsilon -\frac{r_{1}}{2} x_{3} \varepsilon -\frac{r_{2}}{2}x_{4}\varepsilon \right) ,\\ g_{4}&= \frac{(ad-e)(4de-r_{1}r_{3})r_{4}}{2ade\cdot \Delta ((a+d+e)^{2}-\Delta ^{2})}\left( (ad-e)x_{1}x_{2}\right. \\&\left. \quad -\,\frac{r_{1}}{2}x_{2}x_{3}-\frac{r_{2}}{2}x_{2}x_{4} +(ad-e)x_{1}\varepsilon \right. \\&\left. \quad -\,\frac{r_{1}}{2} x_{3}\varepsilon - \frac{r_{2}}{2}x_{4}\varepsilon \right) . \end{aligned}$$

From the center manifold theory, there exists a center manifold for Eq. (21), which can be expressed locally as the following set through the variables \(x_{1}\) and \(\varepsilon \) [28]:

$$\begin{aligned} W^{c}(0)&= \left\{ (x_{1},x_{2},x_{3},x_{4},\varepsilon )\in R^{5}\mid x_{2}=h_{1}(x_{1},\varepsilon ),\right. \nonumber \\&\left. x_{3}=h_{2}(x_{1},\varepsilon ),x_{4}=h_{3}(x_{1},\varepsilon ),|x_{1}|<\delta ,\right. \nonumber \\&|\varepsilon |<\bar{\delta }, h_{i}(0,0)=0,Dh_{i}(0,0)=0,\nonumber \\&\left. i=1,2,3\right\} , \end{aligned}$$
(22)

where \(\delta \) and \(\bar{\delta }\) are sufficiently small and \(Dh_{i}(x_{1},\varepsilon )\) is the total derivative of \(h_{i},~i=1,2,3\).

To obtain the center manifold and derive the vector field on the center manifold, assume that

$$\begin{aligned} \begin{aligned} h_{1}(x_{1},\varepsilon )&= a_{1}x_{1}^{2}+a_{2}x_{1}\varepsilon +a_{3}\varepsilon ^{2}+\mathcal {O}(3),\\ h_{2}(x_{1},\varepsilon )&= b_{1}x_{1}^{2}+b_{2}x_{1}\varepsilon +b_{3}\varepsilon ^{2}+\mathcal {O}(3),\\ h_{3}(x_{1},\varepsilon )&= c_{1}x_{1}^{2}+c_{2}x_{1}\varepsilon +c_{3}\varepsilon ^{2}+\mathcal {O}(3), \end{aligned} \end{aligned}$$
(23)

where \(\mathcal {O}(3)\) includes the third-order terms (such as \(x_{1}^{3}\), \(x_{1}^{2}\varepsilon \), \(x_{1}\varepsilon ^{2}\), \(\varepsilon ^{3}\) and higher-order terms (such as \(x_{1}^{4}\), \(x_{1}^{3}\varepsilon \), etc.). Since \(\dot{\varepsilon }\equiv 0,\) the invariant center manifold should satisfy

$$\begin{aligned} \mathcal {N}(h(x_{1},\varepsilon ))\mathop {=}\limits ^{\triangle }D_{x_{1}}h\cdot g_{1}-Bh-g\equiv 0, \end{aligned}$$
(24)

where

$$\begin{aligned}&h(x_{1},\varepsilon )=\left[ \begin{array}{c} h_{1}\\ h_{2}\\ h_{3} \end{array}\right] , D_{x_{1}}h=\left[ \begin{array}{c} \frac{\partial h_{1}}{\partial x_{1}}\\ \frac{\partial h_{2}}{\partial x_{1}}\\ \frac{\partial h_{3}}{\partial x_{1}} \end{array}\right] , g=\left[ \begin{array}{c} g_{2}\\ g_{3}\\ g_{4} \end{array}\right] ,\\&B=\left[ \begin{array}{ccc} -c&{}\quad 0&{}\quad 0\\ 0&{}\quad \frac{-(a+d+e)+\Delta }{2}&{}\quad 0\\ 0&{}\quad 0&{}\quad \frac{-(a+d+e)-\Delta }{2} \end{array}\right] , \end{aligned}$$

in which \(D_{x_{1}}h\) is the partial derivative of \(h(x_{1},\varepsilon )\) with respect to \(x_{1}\).

Substituting (23) into (24), comparing and balancing the coefficients of the similar terms, one gets

$$\begin{aligned}&x_{1}^{2}:a_{1}=\frac{ad(e-ad)}{c}, b_{1}=0, c_{1}=0,\\&x_{1}\varepsilon :a_{2}=0,\\&b_{2}=\frac{(ad-e)^{2}(4de-r_{2}r_{4})r_{3}}{2ade\cdot \Delta ((a+d+e)^{2}-\Delta ^{2})\lambda _{3}},\\&c_{2}=\frac{(ad-e)^{2}(r_{1}r_{2}-4de)r_{4}}{2ade\cdot \Delta ((a+d+e)^{2}-\Delta ^{2})\lambda _{4}},\\&\varepsilon ^{2}: a_{3}=0, b_{3}=0, c_{3}=0. \end{aligned}$$

Then, Eq. (23) is rewritten as

$$\begin{aligned} x_{2}&= h_{1}(x_{1},\varepsilon )=a_{1}x_{1}^{2}+ \mathcal {O}(3)\nonumber \\&= \frac{ad(e-ad)}{c}x_{1}^{2}+\mathcal {O}(3),\nonumber \\ x_{3}&= h_{2}(x_{1},\varepsilon )=b_{2}x_{1}\varepsilon +\mathcal {O}(3)\nonumber \\&= \frac{(ad-e)^{2}(4de-r_{2}r_{4})r_{3}}{2ade\cdot \Delta ((a+d+e)^{2} -\Delta ^{2})\lambda _{3}}x_{1}\varepsilon +\mathcal {O}(3),\nonumber \\ x_{4}&= h_{3}(x_{1},\varepsilon )=c_{2}x_{1}\varepsilon +\mathcal {O}(3)\nonumber \\&= \frac{(ad-e)^{2}(r_{1}r_{2}-4de)r_{4}}{2ade\cdot \Delta ((a+d+e)^{2} -\Delta ^{2})\lambda _{4}}x_{1}\varepsilon +\mathcal {O}(3).\nonumber \\ \end{aligned}$$
(25)

Applying (25) into \(g_{1}\) of (21) and reducing the vector field to the center manifold, one obtain

$$\begin{aligned}&\dot{x_{1}}=F(x_{1},\varepsilon )+\mathcal {O}(4),\nonumber \\&\dot{\varepsilon }=0, \end{aligned}$$
(26)

where \(F(x_{1},\varepsilon )=\frac{2(ad-e)\varepsilon -(r_{1}b_{2}+r_{2}c_{2}) \varepsilon ^{2}}{2((a+d+e)^{2}-\Delta ^{2})} x_{1}+\frac{2a_{1}(ad-e)-a_{1}(r_{1}b_{2}+r_{2}c_{2}) \varepsilon }{2((a+d+e)^{2}-\Delta ^{2})}x_{1}^{3}.\)

By the bifurcation theory of equilibrium points [28], it can be easily verified that the following conditions are satisfied, for the equilibrium point \((x_{1},\varepsilon )=(0,0)\) of (26) to undergo a pitchfork bifurcation at \(\varepsilon =0\):

$$\begin{aligned}&F(0,0)=0,~~\left. \frac{\partial F}{\partial x_{1}}\right| _{(0,0)}=0, ~~\left. \frac{\partial F}{\partial \varepsilon }\right| _{(0,0)}=0,\\&\left. \frac{\partial ^{2} F}{\partial x_{1}^{2}}\right| _{(0,0)}=0,\\&\left. \frac{\partial ^{2} F}{\partial x_{1}\partial \varepsilon }\right| _{(0,0)} =\frac{ad-e}{(a+d+e)^{2}-\Delta ^{2}}\ne 0,\\&\left. \frac{\partial ^{3} F}{\partial x_{1}^{3}}\right| _{(0,0)}=\frac{a_{1}(ad-e)}{(a+d+e)^{2}-\Delta ^{2}}\ne 0. \end{aligned}$$

Consequently, Theorem 1 is obtained.

Appendix B: The derivation of \(\Lambda _1\)

Here, still utilize the center manifold theory [28]. One can transform the Jacobian matrix in Eq. (2) to the standard form using the same approach in Sect. 3.1. Let

$$\begin{aligned} \left[ \begin{array}{ c } x\\ y\\ z\\ w \end{array} \right] \!=\!\left[ \begin{array}{ c c c c } -d &{} \omega _{0} &{} 0 &{} a+e \\ \frac{-b_{0}(\omega _{0}^{2}+ed)}{e^{2}+\omega _{0}^{2}}&{} \frac{b_{0}(e-d)\omega _{0}}{e^{2}+\omega _{0}^{2}} &{} 0 &{} \frac{-b_{0}(a+e)}{a+d} \\ 0 &{} 0 &{} 1 &{} 0 \\ b_{0} &{} 0 &{} 0 &{} b_{0} \end{array} \right] \! \left[ \begin{array}{ c } y_{1}\\ y_{2}\\ y_{3}\\ y_{4} \end{array} \right] \!,\nonumber \\ \end{aligned}$$
(27)

thus, system (1) can be rewritten as

$$\begin{aligned} \left[ \begin{array}{ c } \dot{y}_{1}\\ \dot{y}_{2}\\ \dot{y}_{3}\\ \dot{y}_{4} \end{array} \right]&= \left[ \begin{array}{ c c c c } 0 &{} -\omega _{0} &{} 0 &{} 0 \\ \omega _{0} &{}0 &{} 0 &{} 0 \\ 0 &{} 0 &{} -c &{} 0 \\ 0 &{} 0 &{} 0 &{} -(a+d+e) \end{array} \right] \left[ \begin{array}{ c } y_{1}\\ y_{2}\\ y_{3}\\ y_{4} \end{array} \right] \nonumber \\&\quad + \left[ \begin{array}{ c } f_{1}\\ f_{2}\\ f_{3}\\ f_{4} \end{array} \right] , \end{aligned}$$
(28)

where

$$\begin{aligned} f_{1}&= \frac{(e-d)(e^{2}+ea+ed+a^{2}+\omega _{0}^{2}+ad)}{\gamma b_{0}}\nonumber \\&(dy_{1}y_{3}-\omega _{0}y_{2}y_{3}-(a+e)y_{3}y_{4}),\nonumber \\ f_{2}&= \frac{(d-e)(ae^{2}+ea^{2}+ead-d\omega ^{2})}{\gamma b_{0}\omega _{0}}\nonumber \\&(dy_{1}y_{3}-\omega _{0}y_{2}y_{3}-(a+e)y_{3}y_{4}),\nonumber \\ f_{3}&= -\frac{db_{0}(\omega _{0}^{2}+ed)}{e^{2}+\omega _{0}^{2}}y_{1}^{2}-\frac{b_{0}\omega _{0}^{2}(e-d)}{e^{2}+\omega _{0}^{2}}y_{2}^{2}\nonumber \\&\quad +\,\frac{(a+e)^{2}}{a+d}y_{4}^{2}+\frac{b_{0} \omega _{0}(2ed-d^{2}+\omega _{0}^{2})}{e^{2}+\omega _{0}^{2}}y_{1}y_{2}\nonumber \\&\quad -\,\frac{b_{0}(a+e)(de^{2}-a\omega _{0}^{2}-aed-ed^{2})}{(a+d)(e^{2}+\omega _{0}^{2})}y_{1}y_{4}\nonumber \\&\quad +\,\frac{b_{0}\omega _{0}(a+e)(ea+ed-ad-d^{2}-e^{2}- \omega _{0}^{2})}{(a+d)(e^{2}+\omega _{0}^{2})}y_{2}y_{4},\nonumber \\ f_{4}&= \frac{(a+d)(e^{2}-d^{2})}{\gamma b_{0}}(dy_{1}y_{3}-\omega _{0}y_{2}y_{3}-(a+e)y_{3}y_{4}),\nonumber \\ \gamma&= (e-d)(e^{2}+2ea+2ed+d^{2}+\,\omega _{0}^{2}+a^{2}+2da).\nonumber \\ \end{aligned}$$
(29)

Based on the center manifold theory, there exists a center manifold for Eq. (28), which can be expressed locally as following set over the \(y_1\) and \(y_2\) variables, i.e.,

$$\begin{aligned}&W_{c}(0)=\{(y_{1},y_{2},y_{3},y_{4})\in R^{4}\mid y_{3}=h^{1}(y_{1},y_{2}),\nonumber \\&\quad y_{4}=h^{2}(y_{1},y_{2}),|y_{1}|<\delta ,|y_{2}|<\bar{\delta }, h^{i}(0,0)\nonumber \\&\quad =0,Dh^{i}(0,0)=0,i=1,2\}, \end{aligned}$$
(30)

where \(\delta \) and \(\bar{\delta }\) are sufficiently small and \(Dh^{i}(y_{1},y_{2})\) is the total derivative of \(h^{i},~i=1,2\).

In order to compute and derive the vector field on the center manifold, assume that

$$\begin{aligned} \left. \begin{array}{lll} &{} y_{3}=h^{1}(y_{1}, y_{2})=d_{1}y_{1}^{2}+d_{2}y_{1}y_{2}+d_{3}y_{2}^{2} +\mathcal {O}(3),\\ &{} y_{4}=h^{2}(y_{1}, y_{2})\\ &{}\quad \;\,=e_{1}y_{1}^{2}+e_{2}y_{1}y_{2}+e_{3}y_{2}^{2}+e_{4}y_{1}^{3} +e_{5}y_{1}^{2}y_{2}\\ &{} \quad \qquad + \,e_{6}y_{1}y_{2}^{2}+e_{7}y_{2}^{3}+\mathcal {O}(4). \end{array} \right. \end{aligned}$$
(31)

After a more tedious approximate computation like that in Sect. 3.1, one gets

$$\begin{aligned} d_{1}&= -\frac{b_{0}}{c} \cdot \frac{2ecd\omega _{0}^{2}-cd^{2} \omega _{0}^{2}+2ed^{2}\omega _{0}^{2} +c\omega _{0}^{4}+2e\omega _{0}^{4}+dc^{2} \omega _{0}^{2}+ed^{2}c^{2}}{(e^{2}+\omega _{0}^{2})(4\omega _{0}^{2}+c^{2})},\nonumber \\ d_{2}&= \frac{b_{0}\omega _{0}(2ecd-cd^{2}-2ed^{2}+c \omega _{0}^{2}+2e\omega _{0}^{2}-4d\omega _{0}^{2})}{(e^{2}+\omega _{0}^{2})(4\omega _{0}^{2}+c^{2})},\nonumber \\ d_{3}&= \frac{b_{0}\omega _{0}^{2}}{c}\cdot \frac{2ecd-cd^{2}-2ed^{2}+c \omega _{0}^{2}-2e\omega _{0}^{2}+dc^{2}-ec^{2}}{(e^{2}+\omega _{0}^{2})(4\omega _{0}^{2}+c^{2})},\nonumber \\ d_{4}&= d_{5}=d_{6}=d_{7}=0,\nonumber \\ e_{1}&= e_{2}=e_{3}=0,\nonumber \\ e_{4}&= \frac{(a+d)(e^{2}-d^{2})}{\gamma b_{0}}\nonumber \\&\quad \cdot \frac{d_{1}d(a+d+e)^{3}+(\omega _{0}^{2}d_{1}- \omega _{0}d_{2}d)(a+d+e)^{2}+\omega _{0}^{2}(7d_{1}d-2d_{2}+2 d_{3}d)(a+d+e)+3 \omega _{0}^{2}(\omega _{0}^{2}d_{1}+2\omega _{0}^{2}d_{3}-dd_{2})}{10\omega _{0}^{2}(a+d+e)^{2}+(a+d+e)^{4}+9\omega _{0}^{4}},\nonumber \\ e_{5}&= \frac{(a+d)(e^{2}-d^{2})}{\gamma b_{0}}\nonumber \\&\quad \cdot \frac{(dd_{2}-\omega _{0}d_{1})(a+d+e)^{3}+ \omega _{0}(3d_{1}d+2\omega _{0}d_{2}-2dd_{3})(a+d+e)^{2} +3\omega _{0}^{2}(dd_{2}-\omega _{0}d_{1}-2 \omega _{0}d_{3})(a+d+e)+9\omega _{0}^{3}dd_{1}}{10\omega _{0}^{2}(a+d+e)^{2}+(a+d+e)^{4}+9\omega _{0}^{4}},\nonumber \\ e_{6}&= \frac{(a+d)(e^{2}-d^{2})}{\gamma b_{0}}\nonumber \\&\quad \cdot \frac{(dd_{3}-\omega _{0}d_{2})(a+d+e)^{3}+ \omega _{0}(2d_{2}d-2\omega _{0}d_{1}+3\omega _{0}d_{3})(a+d+e)^{2} +3\omega _{0}^{2}(2dd_{1}-\omega _{0}d_{2}+dd_{3})(a+d+e)+9 \omega _{0}^{4}d_{3}}{10\omega _{0}^{2}(a+d+e)^{2}+(a+d+e)^{4}+9\omega _{0}^{4}},\nonumber \\ e_{7}&= -\frac{\omega _{0}(a+d)(e^{2}-d^{2})}{\gamma b_{0}}\nonumber \\&\quad \cdot \frac{d_{3}(a+d+e)^{3}+(\omega _{0}d_{2}-d_{3}d)(a+d+e)^{2}+ \omega _{0}(7\omega _{0}d_{3}-2dd_{2}+2\omega _{0}d_{1}) (a+d+e)+3\omega _{0}^{2}(d_{2}-dd_{3}-2dd_{1})}{10\omega _{0}^{2}(a+d+e)^{2}+(a+d+e)^{4}+9\omega _{0}^{4}}. \end{aligned}$$
(32)

Then, the vector field reduced to the center manifold is obtained as following:

$$\begin{aligned} \left[ \begin{array}{ c } \dot{y}_{1}\\ \dot{y}_{2} \end{array} \right]&= \left[ \begin{array}{ c c} 0 &{}\quad -\omega _{0}\\ \omega _{0} &{}\quad 0 \end{array} \right] \left[ \begin{array}{ c } y_{1}\\ y_{2} \end{array} \right] + \left[ \begin{array}{ c } f^{1}\\ f^{2} \end{array} \right] , \end{aligned}$$
(33)

where

$$\begin{aligned} f^{1}&= f^{1}(y_{1},y_{2},h^{1}(y_{1},y_{2}),h^{2}(y_{1},y_{2})),\\ f^{2}&= f^{2}(y_{1},y_{2},h^{1}(y_{1},y_{2}),h^{2}(y_{1},y_{2})). \end{aligned}$$

So, one can calculate the index number \(\Lambda _{1}\) through the following formula:

$$\begin{aligned} \Lambda _{1}&= \frac{1}{16}\left( f^{1}_{y_{1}y_{1}y_{1}} +f^{1}_{y_{1}y_{2}y_{2}}+f^{2}_{y_{1}y_{1}y_{2}} +f^{2}_{y_{2}y_{2}y_{2}}\right) \nonumber \\&+\frac{1}{16\omega _{0}}(f^{1}_{y_{1}y_{2}} \left( f^{1}_{y_{1}y_{1}}+f^{1}_{y_{2}y_{2}}\right) \nonumber \\&\quad -\,f^{2}_{y_{1}y_{2}}(f^{2}_{y_{1}y_{1}}+f^{2}_{y_{2}y_{2}}) -f^{1}_{y_{1}y_{1}}f^{2}_{y_{1}y_{1}}+f^{1}_{y_{2}y_{2}}f^{2}_{y_{2}y_{2}})\nonumber \\&= \frac{(e^{2}+ea+ed+a^{2}+\omega _{0}^{2}+da)(3dd_{1}+dd_{3}-\omega _{0}d_{2})}{8b_{0}(e^{2}+2ea+2ed+d^{2}+\omega _{0}^{2}+a^{2}+2da)}\nonumber \\&\quad -\,\frac{(ae^{2}+ea^{2}+ead-d\omega _{0}^{2})(dd_{2}-\omega _{0}d_{1}-3\omega _{0}d_{3})}{8b_{0}\omega _{0}(e^{2}+2ea+2ed+d^{2}+\omega _{0}^{2}+a^{2}+2da)}.\nonumber \\ \end{aligned}$$
(34)

Appendix C: The proof of Theorem 3

Proof

Rewrite system (15) into the HDQADS vector form [27, 29]:

$$\begin{aligned} \dot{X}=AX+\sum _{i=1}^{4}X_{i}B_{i}X+C, \end{aligned}$$
(35)

where

$$\begin{aligned}&A= \left[ \begin{array}{cccc} -a &{}~a &{}~0 &{}~1\\ b &{}~-e &{}~0 &{}~0\\ 0 &{}~0 &{}~-c &{}~0\\ -b &{}~0 &{}~0 &{}~-d \end{array}\right] ,\\&B_{1}= \left[ \begin{array}{cccc} 0 &{}~0 &{}~0 &{}~0\\ 0 &{}~0 &{}~\frac{1}{2} &{}~0\\ 0 &{}~-\frac{1}{2} &{}~0 &{}~0\\ 0 &{}~0 &{}~-\frac{1}{2} &{}~0 \end{array}\right] , B_{2}= \left[ \begin{array}{cccc} 0 &{}~0 &{}~0 &{}~0\\ 0 &{}~0 &{}~0 &{}~0\\ -\frac{1}{2} &{}~0 &{}~0 &{}~0\\ 0 &{}~0 &{}~0 &{}~0 \end{array}\right] ,\\&B_{3}= \left[ \begin{array}{cccc} 0 &{}~0 &{}~0 &{}~0\\ \frac{1}{2} &{}~0 &{}~0 &{}~0\\ 0 &{}~0 &{}~0 &{}~0\\ -\frac{1}{2} &{}~0 &{}~0 &{}~0 \end{array}\right] ,\\&B_{4}=\mathbf {O},~C=\mathbf {0}, \end{aligned}$$

\(X=(X_{1},X_{2},X_{3},X_{4})^{T}\in R^{4}\) is the state vector, \(A=(a_{ij})_{4\times 4}\in R^{4\times 4},\) \(B_{i}=(b_{jk}^{i})_{4\times 4}\in R^{4\times 4}\) and \(C=(c_{1},c_{2},c_{3},,c_{4})^{T}\in R^{4}.\) All elements of \(B_{1},B_{2},B_{3},B_{4}\) satisfy \(b_{ij}^{k}=b_{ik}^{j} (i,j,k=1,2,3,4).\) Let \(P=(p_{ij})_{4\times 4}, p_{ij}=p_{ji}(i,j=1,2,3,4),\) \(u=(u_{1},u_{2},u_{3},u_{4})\). One can calculate

$$\begin{aligned}&\sum _{i=1}^{4}X_{i}X^{T}(B_{i}^{T}P+PB_{i})X\\&\quad =2X_{1}^{2}X_{3}p_{12}-2X_{1}^{2}X_{2}p_{13}-2X_{1}^{2}X_{2}p_{14}\\&\quad \quad +\,2X_{1}(X_{3}^{2}-X_{2}^{2})p_{23}-2X_{1}(X_{2}X_{4}+X_{3}^{2})p_{34}\\&\quad \quad +\,2X_{1}X_{3}X_{4}(p_{24}-p_{44})\\&\quad \quad +\,2X_{1}X_{2}X_{3}(p_{22}-p_{33}-p_{24}). \end{aligned}$$

According to Lemma 1, need

$$\begin{aligned} \sum _{i=1}^{4}X_{i}X^{T}(B_{i}^{T}P+PB_{i})X=0 \end{aligned}$$

holding for any \(X_{i}\in R\) \((i=1,2,3,4)\). So, take

$$\begin{aligned}&p_{12}=p_{21}=p_{13}=p_{31}=p_{14}=p_{41}=p_{23}\nonumber \\&\quad =p_{32}=p_{34}=p_{43}=0,\nonumber \\&p_{24}=p_{42}=p_{44}=p_{22}-p_{33}. \end{aligned}$$
(36)

Thus, one gets

$$\begin{aligned} P&= \left[ \begin{array}{cccc} p_{11} &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad p_{22}&{}\quad 0 &{}\quad p_{44}\\ 0 &{}\quad 0&{} p_{33} &{}\quad 0\\ 0 &{}\quad p_{44}&{}\quad 0 &{}\quad p_{44} \end{array}\right] ,\\ M&= uA+2C^{T}P\\&= [-u_{1}a+u_{2}b-u_{4}b,~u_{1}a-u_{2}e,~-u_{3}c,\\&u_{1}-u_{4}b],\\ \end{aligned}$$
$$\begin{aligned} Q&= A^{T}P+PA+[B_{1}^{T}u^{T},~B_{2}^{T}u^{T},~B_{3}^{T}u^{T},~B_{4}^{T}u^{T}]^{T}\\&= \left[ \begin{array}{cccc} -2ap_{11} &{}~ap_{11}+bp_{22}-bp_{44}-\frac{1}{2}u_{3} &{}~\frac{1}{2}u_{2}-\frac{1}{2}u_{4}&{}~p_{11}\\ ap_{11}+bp_{22}-bp_{44}-\frac{1}{2}u_{3} &{}-2ep_{22} &{}0 &{}-dP_{44}-eP_{44}\\ \frac{1}{2}u_{2}-\frac{1}{2}u_{4} &{}0 &{} -2cp_{33} &{}0\\ p_{11}&{} -dP_{44}-eP_{44} &{}0 &{}-2dP_{44}\\ \end{array}\right] . \end{aligned}$$

For simplifying \(Q\), take

$$\begin{aligned} u_{1}=u_{2}=u_{4}=0, u_{3}=2(ap_{11}+bp_{33}), \end{aligned}$$

so

$$\begin{aligned} u=(0,0,2(ap_{11}+bp_{33}),0). \end{aligned}$$

Now, one has

$$\begin{aligned}&P= \left[ \begin{array}{cccc} p_{11} &{}\quad 0 &{}\quad 0 &{}\quad 0\\ 0 &{}\quad p_{22}&{}\quad 0 &{}\quad p_{44}\\ 0 &{}\quad 0&{}\quad p_{33} &{}\quad 0\\ 0 &{}\quad p_{44}&{}\quad 0 &{}\quad p_{44} \end{array}\right] ,\\&M=[0,~0,~-2c(ap_{11}+bp_{33}),0],\\&Q=A^{T}P+PA+[B_{1}^{T}u^{T},~B_{2}^{T}u^{T},~B_{3}^{T}u^{T},~B_{4}^{T}u^{T}]^{T}\\&=\left[ \begin{array}{cccc} -2ap_{11} &{}~0 &{}~0&{}~p_{11}\\ 0 &{}-2ep_{22} &{}0 &{}-(d+e)P_{44}\\ 0 &{}0 &{} -2cp_{33} &{}0\\ p_{11}&{} -(d+e)P_{44} &{}0 &{}-2dP_{44}\\ \end{array}\right] \!. \end{aligned}$$

According to Lemma 1, one obtains the Lyapunov-like quadratic function

$$\begin{aligned} V(X)&= X^{T}PX+uX+\frac{1}{4}uP^{-1}u^{T}\\&= p_{11}X_{1}^{2}+p_{33}X_{2}^{2}\\&\quad +\,p_{33}\left( X_{3}+\frac{ap_{11}+bp_{33}}{p_{33}}\right) ^{2}\\&\quad +p_{44}(X_{2}+X_{4})^{2}, \end{aligned}$$

and the derivative of it along with system (1)

$$\begin{aligned} \dot{V}(X)&= X^{T}QX+MX+uC\\&= ap_{11}X_{1}^{2}+ep_{22}X_{2}^{2}+cp_{33}X_{3}^{2}+dp_{44}X_{4}^{2}\\&\quad -\,p_{11}X_{1}X_{4}+(d+e)p_{44}X_{2}X_{4}\\&\quad +\,c(ap_{11}+bp_{33})X_{3}. \end{aligned}$$

Since \(a>0,b>0,c>0,d>0,e>0,p_{ii}>0 (i=1,2,3,4)\) and

$$\begin{aligned}&p_{22}=p_{33}+p_{44},\\&-4aedp_{33}p_{44}+(ad^{2}+ae^{2}-2aed)p_{44}^{2}\\&+ep_{11}p_{33}+ep_{11}p_{44}<0, \end{aligned}$$

one gets \(P>0\) and \(Q<0\). From Lemma 1 the above conclusion holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Q., Chen, Z. et al. Local bifurcation analysis and ultimate bound of a novel 4D hyper-chaotic system. Nonlinear Dyn 78, 2517–2531 (2014). https://doi.org/10.1007/s11071-014-1607-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1607-7

Keywords

Navigation