Skip to main content
Log in

Linear parameter varying feedforward control synthesis using parameter-dependent Lyapunov function

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents the dynamic feedforward control synthesis for linear parameter varying (LPV) systems. It is assumed that all system matrices are dependent on varying parameters, which are measurable with sensor or observable. The parameters have bounded variation rates. Parameter-dependent Lyapunov function is used for the feedforward control synthesis such that the robust stability is assured for all varying parameters at the time of the operation. The method is formulated in terms of linear matrix inequalities for LPV feedforward controller that guarantees the stability of the transfer matrix having \(L_{2}\)-gain. This compensator is designed by adding on the feedback controller in two degrees of freedom control configuration. This controller can be used for the disturbance attenuation or decreasing the tracking error. The numerical examples and simulations are given to provide the applicability of the proposed solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shamma, J.S., Athans, M.: Gain scheduling: potential hazards and possible remedies. IEEE Control Syst. 12(3), 101–107 (1992)

    Article  Google Scholar 

  3. Apkarian, P., Gahinet, P., Becker, G.: Self-scheduled \(H_{\infty }\) linear parameter-varying systems. In: American Control Conference, 1994, vol. 1, pp. 856–860 (29 June–1 July 1994)

  4. Jabbari, F.: Disturbance attenuation of LPV systems with bounded inputs. Dyn. Control 11(2), 133–150 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Masubuchi, I., Akiyama, T., Saeki, M.: Synthesis of output feedback gain-scheduling controllers based on descriptor LPV system representation. In: Proceedings of the 42nd IEEE Conference on Decision and Control, vol. 6, pp. 6115–6120 (9–12 Dec 2003)

  6. Ali, M., Abbas, H., Werner, H.: Controller synthesis for input–output LPV models. In: 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 7694–7699 (15–17 Dec 2010)

  7. Park, B.Y., Yun, S.W., Park, P.G.: H-2 state-feedback control for LPV systems with input saturation and matched disturbance. Nonlinear Dyn. 67, 1083–1096 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. He, X., Zhao, J.: Switching stabilization and \(H_{\infty }\) performance of a class of discrete switched LPV system with unstable subsystems. Nonlinear Dyn. 76(2), 1069–1077 (2013)

  9. Toth, R., Willems, J.C., Heuberger, P.S.C., Van den Hof, P.M.J.: The behavioral approach to linear parameter-varying systems. IEEE Trans. Autom. Control 56(11), 2499–2514 (2011)

    Article  Google Scholar 

  10. Kajiwara, H., Apkarian, P., Gahinet, P.: LPV techniques for control of an inverted pendulum. IEEE Control Syst. 19(1), 44–54 (1999)

    Article  Google Scholar 

  11. Ghersin, A.S., Sanchez Pena, R.S.: LPV control of a 6-DOF vehicle. IEEE Trans. Control Syst. Technol. 10(6), 883–887 (2002)

    Article  Google Scholar 

  12. Altun, Y., Gulez, K.: Linear parameter varying control of permanent magnet synchronous motor via parameter-dependent lyapunov function for electrical vehicles. In: 2012 IEEE International Conference on Vehicular Electronics and Safety (ICVES), pp. 340–345 (24–27 July 2012)

  13. Bei, Lu, Fen, Wu: Switching LPV control of an F-16 aircraft via controller state reset. IEEE Trans. Control Syst. Technol. 14(2), 267–277 (2006)

    Article  Google Scholar 

  14. Wei, Xiukun, del Re, L.: Gain scheduled \(H_{\infty }\) control for air path systems of diesel engines using LPV techniques. IEEE Trans. Control Syst. Technol. 15(3), 406–415 (2007)

    Article  Google Scholar 

  15. Bei, Lu, Choi, Heeju, Buckner, Gregory D., Tammi, Kari: Linear parameter-varying techniques for control of a magnetic bearing system. Control Eng. Pract. 16(10), 1161–1172 (October 2008)

  16. Witte, J., Balini, H.M.N.K., Scherer, C.W.: Robust and LPV control of an AMB system. In: American Control Conference (ACC), 2010, pp. 2194–2199 (30 June–2 July 2010)

  17. Rangajeeva, S.L.M.D., Whidborne, J.F.: Linear parameter varying control of a quadrotor. In: 2011 6th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 483–488 (16–19 Aug 2011)

  18. Gahinet, P., Apkarian, P., Chilali, M.: Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Autom. Control 41(3), 436–442 (Mar 1996)

  19. Feron, E., Apkarian, P., Gahinet, P.: S-procedure for the analysis of control systems with parametric uncertainties via parameter-dependent Lyapunov functions. In: Proceedings of the American Control Conference, 1995, vol. 1, pp. 968–972 (21–23 Jun 1995)

  20. Becker, G., Packard, A.: Robust performance of linear parametrically varying systems using parameterically-dependent linear feedback. Syst. Control Lett. 23(3), 205–215 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Scherer, C.W.: LPV control and full block multipliers. Automatica 37(3), 361–375 (March 2001)

  22. Lim, S., How, J.P.: Analysis of linear parameter-varying systems using a nonsmooth dissipative systems framework. Int J Robust Nonlinear Control 12, 1067–1092 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Li, J., Wang, H.O., Niemann, D., Tanaka, K.: Synthesis of gain-scheduled controller for a class of LPV systems. In: Proceedings of the 38th IEEE Conference on Decision and Control, 1999, vol. 3, pp. 2314–2319 (1999)

  24. Wang, F., Balakrishnan, V.: Improved stability analysis and gain-scheduled controller synthesis for parameter-dependent systems. IEEE Trans. Autom. Control 47(5), 720–734 (2002)

    Article  MathSciNet  Google Scholar 

  25. Xu, H., Jun, Z., Dimirovski, G.M., Chao, C.: Switching control for LPV polytopic systems using multiple Lyapunov functions. In: 30th Chinese Control Conference (CCC), 2011, pp. 1771–1776 (22–24 July 2011)

  26. Becker, G., Packard, A., Philbrick, D., Blas, G.: Control of parametrically-dependent linear systems: a single quadratic lyapunov approach. In: Proceedings of the ACC, 1993, pp. 2795–2799 (1993)

  27. Feron, E., Apkarian, P., Gahinet, P.: Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Trans. Autom. Control 41(7), 1041–1046 (Jul 1996)

  28. Na, W., Ke-You, Z.: Parameter-dependent Lyapunov function approach to stability analysis for discrete-time LPV systems. In: IEEE International Conference on Automation and Logistics, 2007, pp. 724–728 (18–21 Aug 2007)

  29. Stilwell, D.J., Rugh, W.J.: Interpolation methods for gain scheduling. In: Proceedings of the 37th CDC, pp. 3003 (1998)

  30. Rugh, W.J., Shamma, J.S.: Research on gain scheduling. Automatica 36, 1081–1089 (2000)

    Article  MathSciNet  Google Scholar 

  31. Stilwell, D.J., Rugh, W.J.: Stability and \({\cal {L}}_{2}\) gain properties of LPV systems. Automatica 38, 1601–1606 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Alma, M., Martinez, J.J., Landau, I.D., Buche, G.: Design and tuning of reduced order H-infinity feedforward compensators for active vibration control. IEEE Trans. Control Syst. Technol. 20(2), 554–561 (2012)

    Article  Google Scholar 

  33. De Gelder, E., Van De Wal, M., Scherer, C., Hol, C., Bosgra, O.: Nominal and robust feedforward design with time domain constraints applied to a wafer stage. J. Dyn. Syst. Meas. Control 128(2), 204–215 (2006)

    Article  Google Scholar 

  34. van der Meulen, S.H., Tousain, R.L., Bosgra, O.H.: Fixed structure feedforward controller design exploiting iterative trials: application to a wafer stage and a desktop printer. J. Dyn. Syst. Meas. Control 130(5), 051006-1–051006-16 (2008)

    Google Scholar 

  35. Pao, L.Y., Butterworth, J.A., Abramovitch, D.Y.: Combined feedforward/feedback control of atomic force microscopes. In: American Control Conference, 2007 (ACC ’07), pp. 3509–3515 (9–13 July 2007)

  36. Danapalasingam, K.A., la Cour-Harbo, A., Bisgaard, M.: Disturbance effects in nonlinear control systems and feedforward control strategy. In: IEEE International Conference on Control and Automation, 2009 (ICCA 2009), pp. 1974–1979 (9–11 Dec 2009)

  37. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. Analysis and Design. Wiley, Chichester (1996)

    Google Scholar 

  38. Köse, E., Scherer, C.W.: Robust \({\cal {L}}_{2}\)-gain feedforward control of uncertain systems using dynamic IQCs. Int. J. Robust Nonlinear Control 19(11), 1224–1247 (2009)

    Article  MATH  Google Scholar 

  39. Giusto, A., Paganini, F.: Robust synthesis of feedforward compensators. IEEE Trans. Autom. Control 44(8), 1578–1582 (Aug 1999)

  40. Scorletti, G., Fromion, V.: Further results on the design of robust \(\text{ H }_{\infty }\) feedforward controllers and filters. In: 45th IEEE Conference on Decision and Control, 2006, pp. 3560–3565 (13–15 Dec 2006)

  41. Prempain, E., Postlethwaite, I.: A feedforward control synthesis approach for LPV systems. In: American Control Conference, 2008, pp. 3589–3594 (11–13 June 2008)

  42. Altun, Y., Gulez, K., Mumcu, T.V.: Static LPV feedforward controller synthesis for linear parameter varying systems. In: 2013 9th Asian Control Conference (ASCC), pp. 1–4 (23–26 June 2013)

  43. Wu, F., Yang, X.H., Packard, A., Becker, G.: Induced \(\text{ L }_{2}\) norm control for LPV systems with bounded parameter variation rates. Int. J. Robust Nonlinear Control 6(9/10), 983–998 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  44. Scherer, C., Weiland, S.L.: Linear matrix inequalities in control. Lecture notes. http://www.dcsc.tudelft.nl/~cscherer/lmi/notes05.pdf

  45. Lofberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: 2004 IEEE International Symposium on Computer Aided Control Systems Design, pp. 284–289 (2004)

  46. Labit, Y., Peaucelle, D., Henrion, D.: SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI. In: Proceedings. 2002 IEEE International Symposium on Computer Aided Control System Design, 2002, pp. 272–277 (2002)

  47. Bruzelius, F., Breitholtz, C., Pettersson, S.: LPV-based gain scheduling technique applied to a turbo fan engine model. In: Proceedings of the 2002 international conference on control applications, 2002, vol. 2, pp. 713–718 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Altun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, Y., Gulez, K. Linear parameter varying feedforward control synthesis using parameter-dependent Lyapunov function. Nonlinear Dyn 78, 2293–2307 (2014). https://doi.org/10.1007/s11071-014-1544-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1544-5

Keywords

Navigation