Abstract
The dynamical behaviors of gliders (mobile localizations) in diffusion rule B2/S7 are quantitatively analyzed from the theory of symbolic dynamics in two-dimensional symbolic sequence space. Their intrinsic complexity is demonstrated by exploiting the relationship between one-dimensional and two-dimensional subshifts. Based on this rigorous approach and technique, the underlying chaos of the extant gliders and their combinations is characterized in a subtle way. It is demonstrated that they can be identified to distinct subsystems with very rich and complicated dynamics; that is, diffusion rule is topologically mixing and possesses positive topological entropy on each subsystem. This analytical assertion provides the fact that diffusion rule is covered with complex subsystems “almost everywhere”. Finally, it is worth mentioning that the procedure proposed in this paper is also applicable to all other gliders arising from the two-dimensional cellular automata therein. It is an extended discovery in both cellular automata and chaos theory.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Peng, G., Nie, F., Cao, B., Liu, C.: A driver’s memory lattice model of traffic flow and its numerical simulation. Nonlinear Dyn. 67(3), 1811–1815 (2012)
Goldstein, J.: The singular nature of emergent levels: suggestions for a theory of emergence. Nonlinear Dyn. 6(4), 293–309 (2002)
Taniguchi, Y., Suzuki, H.: A traffic cellular automaton with estimation of time to collision. J. Cell. Autom. 5–6, 407–416 (2013)
Adamatzky, A., Wuensche, A., Benjamin, D.: Glider-based computing in reaction-diffusion hexagonal cellular automata. Chaos Sol. Fract. 27, 287–295 (2006)
Neumann, J.V., Burks, A.W.: The Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1996)
Gardner, M.: The fantastic combinations of John Conway’s new solitaire game ‘life’. Sci. Am. 223, 120–123 (1970)
Adamatzky, A.: Game of Life Cellular Automata. Springer, London (2010)
Hedlund, G.A.: Endomorphisms and automorphism of the shift dynamical system. Theory Comput. Syst. 3, 320–375 (1969)
Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983)
Wolfram, S.: Theory and Applications of Cellular Automata. World Scientifc, Singapore (1986)
Li, W., Packard, N.: The structure of elementary cellular automata rule space. Complex Syst. 4, 281–297 (1990)
Wolfram, S.: A New Kind of Science. Wolfram Media, Champaign (2002)
Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: from bernoulli-shift to 1/f spectrum. Int. J. Bifurc Chaos 15(4), 1045–1223 (2005)
Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part XIII: Bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc Chaos 20(7), 1859–2003 (2010)
Chua, L.O., Pazienza, G.E.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part XIV: More Bernoulli \(\sigma _\tau \)-shift rules. Int. J. Bifurc Chaos 20(8), 2253–2425 (2010)
Chua, L.O., Sbitnev, V.I., Yoon, S.: A nonlinear dynamics perspective of Wolfram’s new kind of science. Part VI: from time-reversible attractors to the arrows of time. Int. J. Bifurc Chaos 16(5), 1097–1373 (2006)
Wuensche, A., Lesser, M.J.: The Global Dynamics of Cellular Automata: An Atlas of Basin of Attraction Fields of One-Dimensional Cellular Automata. Addison-Wesley, Reading (1992)
Cattaneo, G., Formenti, E., Margara, L., Mauri, G.: On the dynamical behavior of chaotic cellular automata. Theory Comput. Sci. 217, 31–51 (1999)
Jin, W.F., Chen, F.Y., Chen, G.R., Chen, L., Chen, F.F.: Extending the symbolic dynamics of Chua’s Bernoulli-shift rule 56. J. Cell. Autom. 5(1–2), 121–138 (2010)
Chen, F.Y., Jin, W.F., Chen, G.R., Chen, F.F., Chen, L.: Chaos of elementary cellular automata rule 42 of Wolfram’s class II. Chaos 19(1), 013140 (2009)
Chen, G.R., Chen, F.Y., Guan, J.B., Jin. W.F.: Symbolic dynamics of some bernoulli-shift cellular automata rules. 2010 International Symposium on Nonlinear Theory and its Applications, pp. 595–598 (2010)
Martinez, G.J., Adamatzky, A., McIntosh, H.V.: Localization dynamics in a binary two-dimensional cellular automaton: the diffusion rule. In: Adamatzky, A. (ed.) Game of Life Cellular Automata, pp. 291–315. Springer, London (2010)
Cook, M.: Universality in elementary cellular automata. Complex Syst. 15(1), 1–40 (2004)
Adamatzky, A., Wuensche, A.: Computing in spiral rule reaction-diffusion hexagonal cellular automaton. Complex Syst. 16(4), 277–297 (2006)
Jin, W.F., Chen, F.Y., Chen, G.R.: Glider implies Li–Yorke chaos for one-dimensional cellular automata. J. Cell. Autom. (in press)
Cattaneo, G., Finelli, M., Margara, L.: Investigating topological chaos by elementary cellular automata dynamics. Theo. Comput. Sci. 1–2, 219–241 (2000)
Lind, D.: Multi-dimensional symbolic dynamics. In: Proceedings of Symposia in Applied Mathematics (2004)
Kitchens, B.: Symbolic Dynamics: One-Sided, Two-Sided and Countable State Markov Shifts. Springer, Berlin (1998)
Blanchard, F., Glasner, E., Kolyada, S.: On Li–Yorke pairs. J. Reine Angew. Math. 547, 51–68 (2002)
Acknowledgments
This research was jointly supported by NSFC (Grants no. 11171084 and 60872093), and Foundation of Zhejiang Chinese Medical University (Grant no. 17211076).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
-
1.
The determinative block system \(\fancyscript{A}_1\) is \(\fancyscript{A}_1=\fancyscript{A}=\{(A_0,A_0,A_0), \ (A_0,A_0,A_1),\ (A_0,A_1,A_2)\), \((A_1,A_2,A_0), (A_2,A_0,A_0)\}\), and its transition matrix \(A_1\) is \(A_1=A=\left[ \begin{array}{ccccc} 1&{}\ 1&{}\ 0&{}\ 0&{}\ 0 \\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0 \\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0 \\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1\\ 1&{}\ 1&{}\ 0&{}\ 0&{}\ 0 \end{array} \right] \).
-
2.
The determinative block system \(\fancyscript{A}_2\) is \(\fancyscript{A}_2=\{(A_3,A_4,A_2), (A_4,A_2,A_0), (A_2,A_0,A_0)\), \( (A_0,A_0,A_3)\), \((A_0,A_3,A_4), (A_0,A_0,A_0)\}\), and its transition matrix \(A_2\) is \(A_2\!=\!\left[ \! \begin{array}{cccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \!\right] \!\).
-
3.
The determinative block system \(\fancyscript{A}_3\) is \(\fancyscript{A}_1=\{(A_4,A_3,A_2), \ (A_3,A_2,A_0), \ (A_2,A_0,A_0)\), \((A_0,A_0, A_4)\), \((A_0,A_4,A_3),(A_0,A_0,A_0)\}\), and its transition matrix \(A_3\) is \(A_3=\left[ \begin{array}{cccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
4.
The determinative block system \(\fancyscript{A}_4\) is \(\fancyscript{A}_4=\{(A_1,A_0,A_2), \ (A_0,A_2,A_0), \ (A_2,A_0,A_0)\), \((A_0,A_0,A_1)\), \((A_0,A_1,A_0),(A_0,A_0,A_0)\}\), and its transition matrix \(A_4\) is \(A_4=\left[ \begin{array}{cccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
5.
The determinative block system \(\fancyscript{A}_5\) is \(\fancyscript{A}_5=\fancyscript{B}=\{(A_0,A_0,A_0), (A_0,A_0,A_1), (A_0,A_1,A_2), (A_1,A_2,A_0), (A_2,A_0,A_0), (A_0,A_3,A_4), (A_3,A_4,A_2)\), \((A_4,A_2,A_0), (A_0,A_0,A_3) \}\), and its transition matrix \(A_5\) is \(A_5=B=\left[ \begin{array}{ccccccccc} 1&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1 \\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0 \\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0 \\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0\\ 1&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1\\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0\\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0\\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0&{}\ 0&{}\ 0\\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 0&{}\ 1&{}\ 0&{}\ 0&{}\ 0 \end{array} \right] \).
-
6.
The determinative block system \(\fancyscript{A}_6\) is \(\fancyscript{A}_6=\{(A_0,A_1,A_2),(A_1,A_2,A_0), (A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1),(A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3) \}\), and its transition matrix \(A_6\) is \(A_6=\left[ \begin{array}{ccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ \end{array} \right] \).
-
7.
The determinative block system \(\fancyscript{A}_7\) is \(\fancyscript{A}_7=\{(A_0,A_1,A_2), (A_1,A_2,A_0), (A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1), (A_1,A_0,A_2), (A_0,A_2,A_0), (A_0,A_1,A_0) \}\), and its transition matrix \(A_7\) is \(A_7=\left[ \begin{array}{cccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 \\ \end{array} \right] \).
-
8.
The determinative block system \(\fancyscript{A}_8\) is \(\fancyscript{A}_8=\{(A_3,A_4,A_2), (A_4,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_3), (A_0,A_3,A_4), (A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3), (A_0,A_0,A_0) \}\), and its transition matrix \(A_8\) is \(A_8=\left[ \begin{array}{cccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
9.
The determinative block system \(\fancyscript{A}_9\) is \(\fancyscript{A}_9=\{(A_3,A_4,A_2), (A_4,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_3), (A_0,A_3,A_4), (A_1,A_0,A_2), (A_0,A_2,A_0), (A_0,A_0,A_1), (A_0,A_1,A_0), (A_0,A_0,A_0) \}\), and its transition matrix \(A_9\) is \(A_9=\left[ \begin{array}{cccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
10.
The determinative block system \(\fancyscript{A}_{10}\) is \(\fancyscript{A}_{10}=\{(A_4,A_3,A_2), (A_3,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3),(A_1,A_0,A_2),(A_0,A_2,A_0), (A_0,A_0,A_1), (A_0,A_1,A_0), (A_0,A_0,A_0) \}\), and its transition matrix \(A_{10}\) is \(A_{10}=\left[ \begin{array}{cccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
11.
The determinative block system \(\fancyscript{A}_{11}\) is \(\fancyscript{A}_{11}=\{(A_0,A_1,A_2), (A_1,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1), (A_3,A_4,A_2), (A_4,A_2,A_0), (A_0,A_0,A_3), (A_0,A_3,A_4), (A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3)\}\), and its transition matrix \(A_{11}\) is \(A_{11}=\left[ \begin{array}{ccccccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ \end{array} \right] \).
-
12.
The determinative block system \(\fancyscript{A}_{12}\) is \(\fancyscript{A}_{12}=\{(A_0,A_1,A_2), (A_1,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1), (A_3,A_4,A_2), (A_4,A_2,A_0), (A_0,A_0,A_3)\), \( (A_0,A_3,A_4), (A_1,A_0,A_2), (A_0,A_2,A_0), (A_0,A_1,A_0)\}\), and its transition matrix \(A_{12}\) is \(A_{12}=\left[ \begin{array}{cccccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 \\ \end{array} \right] \).
-
13.
The determinative block system \(\fancyscript{A}_{13}\) is \(\fancyscript{A}_{13}=\{(A_0,A_1,A_2), (A_1,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1),(A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3) , (A_1,A_0,A_2), (A_0,A_2,A_0), (A_0,A_1,A_0)\}\), and its transition matrix \(A_{13}\) is \(A_{13}=\left[ \begin{array}{cccccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 \\ \end{array} \right] \).
-
14.
The determinative block system \(\fancyscript{A}_{14}\) is \(\fancyscript{A}_{14}=\{(A_3,A_4,A_2), (A_4,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_3), (A_0,A_3,A_4), (A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3), (A_1,A_0,A_2), (A_0,A_2,A_0) (A_0,A_0,A_1), (A_0,A_1,A_0), (A_0,A_0,A_0)\}\), and its transition matrix \(A_{14}\) is \(A_{14}=\left[ \begin{array}{cccccccccccccc} 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 0 \\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 0 &{}\ 0 &{}\ 1 &{}\ 0 &{}\ 1 \\ \end{array} \right] \).
-
15.
The determinative block system \(\fancyscript{A}_{15}\) is \(\fancyscript{A}_{15}=\{(A_0,A_1,A_2), (A_1,A_2,A_0),(A_2,A_0,A_0), (A_0,A_0,A_0), (A_0,A_0,A_1), (A_3,A_4,A_2), (A_4,A_2,A_0), (A_0,A_0,A_3), (A_0,A_3,A_4), (A_4,A_3,A_2), (A_3,A_2,A_0), (A_0,A_0,A_4), (A_0,A_4,A_3), (A_1,A_0,A_2), (A_0,A_2,A_0), (A_0,A_1,A_0)\}\), and its transition matrix \(A_{15}\) is \(A_{15}\!=\!\left[ \begin{array}{cccccccccccccccc} 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 \\ 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 \\ 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 0 &{}\, 1 &{}\, 0 &{}\, 0 \\ \end{array} \right] \).
Rights and permissions
About this article
Cite this article
Jin, W., Chen, F. A novel construction of chaotic dynamics base gliders in diffusion rule B2/S7. Nonlinear Dyn 78, 779–788 (2014). https://doi.org/10.1007/s11071-014-1476-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-014-1476-0