Skip to main content
Log in

Synchronization of inferior olive neurons via \({\mathcal {L}}_1\) adaptive feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper considers the synchronization of inferior olive neurons based on the \({\mathcal {L}}_1\) adaptive control theory. The ION model treated here is the cascade connection of two nonlinear subsystems, termed ZW and UV subsystems. It is assumed that the structure of the nonlinear functions and certain parameters of the IONs are not known, and disturbance inputs are present in the system. First, an \({\mathcal {L}}_1\) adaptive control system is designed to achieve global synchrony of the ZW subsystems using a single control input. This controller can accomplish local synchrony of the UV subsystems if the linearized UV subsystem is exponentially stable. For global synchrony of the UV subsystems, an \({\mathcal {L}}_1\) adaptive control law is designed. Each of these controllers includes a state predictor, an update law, and a control law. In the closed-loop system, global synchrony of the complete models of the IONs (the interconnected ZW and UV subsystems) is accomplished using these two adaptive controllers. Simulations results show that in the closed-loop system, the IONs are synchronized, despite unmodeled nonlinearities, disturbance inputs, and parameter uncertainties in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Llinas, R.: Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 162, 797–804 (2009)

    Article  Google Scholar 

  2. Welsh, J.P., Llinas, R.: Some organizing principles for the control of movement based on olivocerebellar physiology. Prog. Brain Res. 114, 449–461 (1997)

    Article  Google Scholar 

  3. Ito, M.: Cerebellum and Neural Control. Raven, New York (1984)

    Google Scholar 

  4. Armstrong, D.M.: Functional significance of connections of the interior olive. Physiol. Rev. 54, 358–417 (1974)

    Google Scholar 

  5. Sotelo, C., Llinas, R., Baker, R.: Structural study of inferior olivary nucleus of the cat : morphological correlates of electronic coupling. J. Neurophysiol. 37, 541–559 (1974)

    Google Scholar 

  6. Benardo, L.S., Foster, R.E.: Oscillatory behavior in inferior olive neurons: mechanism, modulation, cell aggregates. Brain Res. Bull. 17, 773–784 (1986)

    Article  Google Scholar 

  7. Manor, Y., Rinzel, J., Segev, I., Yarom, Y.: Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J. Neurophysiol. 77, 2736–2752 (1997)

    Google Scholar 

  8. Lampl, I.: Characterization of subthreshold oscillations in inferior olivary neurons: mechanisms of generation, mode of operation and their functional role. PhD thesis: Hebrew University, Israel (1994)

  9. Schweighofer, N., Doya, K., Kawato, M.: Electrophysiological properties of inferior olive neurons: a compartmental model. J. Neurophysiol. 82, 804–817 (1999)

    Google Scholar 

  10. Velarde, M.G., Nekorkin, V.I., Kazantsev, V.B., Makarenko, V.I., Llinas, R.: Modeling inferior olive neuron dynamics. Neural Netw. 15, 5–10 (2002)

    Article  Google Scholar 

  11. Llinas, R., Leznik, E., Makarenko, V.I.: The olivo-cerebellar circuit as a universal motor control system. IEEE J. Ocean. Eng. 29, 631–639 (2004)

    Article  Google Scholar 

  12. Kazantsev, V.B., Nekorkin, V.I., Makarenko, V.I., Llinas, R.: Self-referential phase reset based on inferior olive oscillator dynamics. PNAS 101, 18183–18188 (2004)

    Article  Google Scholar 

  13. Kazantsev, V.B., Nekorkin, V.I., Makarenko, V.I., Llinas, R.: Olivo-cerebellar cluster-based universal control system. PNAS 100, 13064–13068 (2003)

    Article  Google Scholar 

  14. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Izhikevich, E.M.: Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press, Cambridge (2007)

    Google Scholar 

  16. Guckenheimer, J., Labouriau, I.S.: Bifurcation of the Hodgkin and Huxley equations: a new twist. Bull. Math. Biol. 55, 937–952 (1993)

    Article  MATH  Google Scholar 

  17. Katori, Y., Lang, E.J., Onizuka, M., Kawato, M., Aihara, K.: Quantitative modeling of spatio-temporal dynamics of inferior olive neurons with a simple conductance-based model. Int. J. Bifurcat. Chaos 20, 583–603 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee, K.W., Singh, S.N.: Adaptive global synchrony of inferior olive neurons. Bioinspir. Biomim 4, 036003 (2009)

    Article  Google Scholar 

  19. Lee, K.W., Singh, S.N.: Bifurcation of orbits and synchrony in inferior olive neurons. J. Math. Biol. 65, 465–491 (2012)

  20. Wang, W., Slotine, J.E.: On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern. 92, 38–53 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seo, K., Chung, S., Slotine, J.E.: CPG-based control of a turtle-like underwater vehicle. Auton. Robot. 28, 247–269 (2010)

    Article  Google Scholar 

  22. Sharma, B.B., Kar, I.N.: Observer-based synchronization scheme for a class of chaotic systems using contraction theory. Nonlinear Dyn. 63, 429–445 (2011)

    Article  MathSciNet  Google Scholar 

  23. Bandyopadhyay, P.R., Singh, S.N., Thivierge, D.P., Annaswamy, A.M., Leinhos, H.A., Fredette, A.R., Beal, D.N.: Synchronization of animal-inspired multiple high-lift fins in an underwater vehicle using olivo-cerebellar dynamics. IEEE J. Ocean. Eng. 33, 563–578 (2008)

    Article  Google Scholar 

  24. Barron, M.A., Sen, M.: Synchronization of four coupled van der Pol oscillators. Nonlinear Dyn. 56, 357–367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roopaei, M., Jahromi, M.Z., Ranjibar-Sahraei, B., Lin, T.: Synchronization of two different chaotic systems using novel adaptive interval type-2 fuzzy sliding mode control. Nonlinear Dyn. 66, 667–680 (2011)

    Article  MATH  Google Scholar 

  26. Ghosh, D.: Nonlinear active observer-based generalized synchronization in time-delayed systems. Nonlinear Dyn. 59, 289–296 (2010)

    Article  MATH  Google Scholar 

  27. Bowong, S.: Adaptive synchronization of chaotic systems with unknown bounded uncertainties via backstepping approach. Nonlinear Dyn. 49, 59–70 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Munoz-Pacheco, J.M., Zambrano-Serrano, E., Felix-Beltran, O., Gomez-Pavon, L.C., Luis-Ramos, A.: Synchronization of PWL function-based 2D and 3D multi-scroll chaotic systems. Nonlinear Dyn. 70, 1633–1643 (2012)

    Article  MathSciNet  Google Scholar 

  29. Hovakimyan, N., Cao, C.: Adaptive Control Theory Guaranteed Robustness with Fast Adaptation. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  30. Cao, C., Hovakimyan, N.: Adaptive control for nonlinear systems in the presence of unmodelled dynamics: part II. In: American Control Conference, pp. 4099–4104 (2008)

  31. Krstic, M., Kanellakopoulos, L., Kokotovic, P.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    Google Scholar 

  32. Pomet, J.-B., Praly, L.: Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Trans. Autom. Control 37, 729–740 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahjendra N. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalike, S.K., Lee, K.W. & Singh, S.N. Synchronization of inferior olive neurons via \({\mathcal {L}}_1\) adaptive feedback. Nonlinear Dyn 78, 467–483 (2014). https://doi.org/10.1007/s11071-014-1454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1454-6

Keywords

Navigation