Skip to main content
Log in

Multi-valued nonlinear perturbations of time fractional evolution equations in Banach spaces

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper is concerned with the fractional evolution inclusion \(^\mathrm{c}D_t^q u(t)\in Au(t)+F(t,u(t))\) in Banach spaces, where \(^\mathrm{c}D_t^q\), \(0<q<1\), is the regularized Caputo fractional derivative of order q, A generates a compact semigroup, and \(F\) is a multi-valued function with convex, closed values. Constructing a suitable directionally \(L^p\)-integrable selection from \(F\), we study the compactness and \(R_\delta \)-structure of the set of trajectories on a closed domain. Moreover, we discuss the \(R_\delta \)-structure of the set of trajectories to the control problem corresponding to the inclusion above. Finally, we apply our abstract theory to boundary value problems of fractional diffusion inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, J., Gabor, G., Górniewicz, L.: Topological structure of solution sets to multi-valued asymptotic problems. Z. Anal. Anwend. 19(1), 35–60 (2000)

    Article  MATH  Google Scholar 

  2. Andres, J., Gabor, G., Górniewicz, L.: Acyclicity of solution sets to functional inclusions. Nonlinear Anal. 49, 671–688 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andres, J., Pavlačková, M.: Topological structure of solution sets to asymptotic boundary value problems. J. Differ. Equ. 248, 127–150 (2010)

    Article  MATH  Google Scholar 

  4. Anh, V.V., Leonenko, N.N.: Spectral analysis of fractional kinetic equations with randomdata. J. Stat. Phys. 104, 1349–1387 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aronszajn, N.: Le correspondant topologique de l’unicité dans la théorie des équations différentielles. Ann. Math. 43, 730–738 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bakowska, A., Gabor, G.: Topological structure of solution sets to differential problems in Fréchet spaces. Ann. Polon. Math. 95(1), 17–36 (2009)

    Article  MathSciNet  Google Scholar 

  7. Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Methods Nonlinear Anal. 32(1), 115–130 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems. Birkha\(\ddot{u}\)ser, Boston (2007)

  9. Bothe, D.: Multi-valued perturbations of \(m\)-accretive differential inclusions. Isr. J. Math. 108, 109–138 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, D.H., Wang, R.N., Zhou, Y.: Nonlinear evolution inclusions: topological characterizations of solution sets and applications. J. Funct. Anal. 265, 2039–2073 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Conti, G., Obukhovskii, V., Zecca, P.: On the topological structure of the solution set for a semilinear functional-differential inclusion in a Banach space. In: Topology in Nonlinear Analysis, Banach Center Publications 35, pp. 159–169. Institute of Mathematics of the Polish Academy of Sciences, Warszawa (1996)

  12. Deimling, K.: Multi-valued Differential Equtions. de Gruyter, Berlin (1992)

    Book  Google Scholar 

  13. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: F. Keil, W. Mackens, H. Voss, J. Werther (eds.) Scientific Computing in Chemical Engineering II Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg, 1999

  14. Dugundji, J.: An extension of Tietze’s theorem. Pac. J. Math. 1, 353–367 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199(2), 211–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. El-Sayed, A., Ibrahim, A.: Multivalued fractional differential equations. Appl. Math. Comput. 68(1), 15–25 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gabor, G.: Acyclicity of solution sets of inclusions in metric spaces. Topol. Methods Nonlinear Anal. 14, 327–343 (1999)

  18. Gabor, G.: Some results on existence and structure of solution sets to differential inclusions on the halfline. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5, 431–446 (2002)

    MATH  MathSciNet  Google Scholar 

  19. Gabor, G., Grudzka, A.: Structure of the solution set to impulsive functional differential inclusions on the half-line. Nonlinear Differ. Equ. Appl. 19, 609–627 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Henderson, J., Ouahab, A.: Impulsive differential inclusions with fractional order. Computers Math. Appl. 59(3), 1191–1226 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hilfer, H.: Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapure (2000)

    Book  MATH  Google Scholar 

  22. Hu, S.C., Papageorgiou, N.S.: On the topological regularity of the solution set of differential inclusions with constraints. J. Differ. Equ. 107(2), 280–289 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applicaitons, vol. 7. Walter de Gruyter, Berlin (2001)

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  25. Medve\(\check{\rm d}\), M.: On the global existence of mild solutions of nonlinear delay systems associated with continuous and analytic semigroups. Electron. J. Qual. Theory Differ. Equ. Proc. 8th Coll. QTDE 13, 1–10 (2008)

  26. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  27. Ouahab, A.: Fractional semilinear differential inclusions. Comput. Math. Appl. 64, 3235–3252 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Paicu, A.: Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337, 1238–1248 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Paicu, A., Vrabie, I.I.: A class of nonlinear evolution equations subjected to nonlocal initial conditions. Nonlinear Anal. 72, 4091–4100 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

  31. Seidman, T.I.: Invariance of the reachable set under nonlinear perturbations. SIAM J. Control Optim. 25, 1173–1191 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 75, 2nd edn. Longman and Wiley, Harlow (1995)

  33. Vrabie, I.I.: Existence in the large for nonlinear delay evolution inclusions with nonlocal initial conditions. J. Funct. Anal. 262, 1363–1391 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vrabie, I.I.: Existence for nonlinear evolution inclusions with nonlocal retarded initial conditions. Nonlinear Anal. 74, 7047–7060 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, J.R., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12, 3642–3653 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, R.N., Yang, Y.H.: On the Cauchy problems of fractional evolution equations with nonlocal initial conditions. Results Math. 63, 15–30 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wang, J.R., Zhou, Y., Fe\(\breve{c}\)kan, M.: Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn. 71, 685–700 (2013)

  38. Wang, R.N., Zhu, P.X.: Non-autonomous evolution inclusions with nonlocal history conditions: global integral solutions. Nonlinear Anal. 85, 180–191 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang, R.N., Chen, D.H., Xiao, T.J.: Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, 202–235 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, R.N., Xiao, T.J., Liang, J.: A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24, 1435–1442 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yagi, A.: Abstract Parabolic Evolution Equations and Their Applications. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  42. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhou, Y., Jiao, F., Pecaric, J.: On the Cauchy problem for fractional functional differential equations in Banach spaces. Topol. Methods Nonlinear Anal. (2014) (in press)

  44. Zhou, Y., Tarasov, V. E., Trujillo, J.J., et al.: Dynamics of fractional partial differential equations. Eur. Phys. J. Spec. Top. (2014) (in press)

  45. Zhu, Q.J.: On the solution set of differential inclusions in Banach space. J. Differ. Equ. 93, 213–237 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Research supported by the NNSF of China (Nos. 11101202, 61104138) and the University Scientific and Technological Innovation Project of Guangdong Province (No. 2013KJCX0068). The authors would like to thank the referees very much for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Hua Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RN., Zhu, PX. & Ma, QH. Multi-valued nonlinear perturbations of time fractional evolution equations in Banach spaces. Nonlinear Dyn 80, 1745–1759 (2015). https://doi.org/10.1007/s11071-014-1453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1453-7

Keywords

Navigation