Skip to main content
Log in

Stable trajectory of logistic map

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the stable trajectory of Logistic Map has been investigated by canonical duality theory from the perspective of global optimization. Numerical result of our method shows that it totally differs from traditional chaotic solution solved by Euler method. In addition, we have applied our method to three well-known standard benchmarks in global optimization. Numerical simulations are given to illustrate the effectiveness of the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lorenz, E.N.: Deterministic non-periodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  2. Rodriguez-Vazquez, A.B., Huertas, J.L., Chua, L.O.: Chaos in switched-capacitor circuit. IEEE Trans. Circuits Syst. 32(10), 1083–1085 (1985)

    Article  MathSciNet  Google Scholar 

  3. Kyrtsou, C., Labys, W.: Evidence for chaotic dependence between US inflation and commodity prices. J. Macroecon. 28(1), 256–266 (2006)

    Article  Google Scholar 

  4. Vano, J.A., Wildenberg, J.C., Andersonv, M.B., Noel JKand Sprott, J.C.: Chaos in low-dimensional Lotka–Volterra models of competition. Nonlinearity 19(10), 2391 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grebogi, C., McDonald, S.W., Ott, E., Yorke, J.A.: Final state sensitivity: an obstruction to predictability. Phys. Lett. A 393, 415–418 (1983)

    Article  MathSciNet  Google Scholar 

  6. Moon, F.C., Li, G.-X.: Fractal basin boundaries and homoclinic orbits for periodic motion in a two-Well potential. Phys. Rev. Lett. 55, 1439–1442 (1985)

    Article  MathSciNet  Google Scholar 

  7. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Bangkok (1996)

    MATH  Google Scholar 

  8. Wang, L.G., Zhang, X.J., Xu, D.G., Huang, W.: Study of differential control method for solving chaotic solutions of nonlinear dynamic system. Nonlinear Dyn. 67(4), 2821–2833 (2012)

    Article  Google Scholar 

  9. Olson, C.C., Nichols, J.M., Virgin, L.N.: Parameter estimation for chaotic systems using a geometric approach: theory and experiment. Nonlinear Dyn. 70(1), 381–391 (2012)

    Article  MathSciNet  Google Scholar 

  10. Ho, W.H., Chou, J.H., Guo, C.Y.: Parameter identification of chaotic systems using improved differential evolution algorithm. Nonlinear Dyn. 61, 29–41 (2010)

  11. Yuan, L.G., Yang, Q., Zeng, C.: Chaos detection and parameter identification in fractional-order chaotic systems with delay. Nonlinear Dyn. doi:10.1007/s11071-013-0799-6

  12. Neuberger, J.W., Renka, R.J.: Least squares and chaotic behavior in initial value problems. J. Nonlinear Anal. Convexity 6, 65–70 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Hussain, I., Shah, T., Gondal, M.A., Mahmood, H.: An efficient approach for the construction of LFT S-boxes using chaotic logistic map. Nonlinear Dyn. 71(1), 133–140 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jiang, H.: Directly adaptive fuzzy control of discrete-time chaotic systems by least squares algorithm with dead-zone. Nonlinear Dyn. 62(3), 553–559 (2010)

    Article  MATH  Google Scholar 

  15. Gao, D.Y., Strang, G.: Geometric nonlinearity: potential energy, complementary energy, and the gap function. Q. Appl. Math. 47(3), 487–504 (1989)

    MathSciNet  MATH  Google Scholar 

  16. Gao, D.Y., Wu, C.Z.: On the triality theory for a quartic polynomial optimization problem. J. Ind. Manag. Optim. 8(1), 229–242 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gao, D.Y., Yu, H.: Multi-scale modelling and canonical dual finite element method in phase transitions of solids. Int. J. Solids Struct. 45, 3660–3673 (2008)

    Article  MATH  Google Scholar 

  18. Zhang, J., Gao, D.Y., Yearwood, J.: A novel canonical dual computational approach for prion agaaaaga amyloid fibril molecular modeling. J. Theor. Biol. 284, 149–157 (2011)

    Article  MathSciNet  Google Scholar 

  19. Zhu, C., Byrd, R.H., Nocedal, J.: L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kok, S., Sandrock, C.: Locating and characterizing the stationary points of the extended Rosenbrock function. Evolut. Comput. 17(3), 437–453 (2009)

    Article  Google Scholar 

  21. Wu, C.Z., Li, C.J., Gao, D.Y.: Canonical primal-dual method for solving non-convex minimization problems. http://arxiv.org/abs/1212.6492 (2012)

Download references

Acknowledgments

This research is supported by Australia Government grant through the Collaborative Research Network(CRN) to the University of Ballarat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhou, X. & Gao, D.Y. Stable trajectory of logistic map. Nonlinear Dyn 78, 209–217 (2014). https://doi.org/10.1007/s11071-014-1433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1433-y

Keywords

Navigation