Skip to main content
Log in

Bifurcation analysis of a diffusive ratio-dependent predator–prey model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a ratio-dependent predator–prey model with diffusion is considered. The stability of the positive constant equilibrium, Turing instability, and the existence of Hopf and steady state bifurcations are studied. Necessary and sufficient conditions for the stability of the positive constant equilibrium are explicitly obtained. Spatially heterogeneous steady states with different spatial patterns are determined. By calculating the normal form on the center manifold, the formulas determining the direction and the stability of Hopf bifurcations are explicitly derived. For the steady state bifurcation, the normal form shows the possibility of pitchfork bifurcation and can be used to determine the stability of spatially inhomogeneous steady states. Some numerical simulations are carried out to illustrate and expand our theoretical results, in which, both spatially homogeneous and heterogeneous periodic solutions are observed. The numerical simulations also show the coexistence of two spatially inhomogeneous steady states, confirming the theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Akcakaya, H.R., Arditi, R., Ginzburg, L.R.: Ratio-dependent prediction: an abstraction that works. Ecology 76, 995–1004 (1995)

    Article  Google Scholar 

  2. Aly, S., Kim, I., Sheen, D.: Turing instability for a ratio-dependent predator–prey model with diffusion. Appl. Math. Comput. 217, 7265–7281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allesina, S., Tang, S.: Stability criteria for complex ecosystems. Nature 483, 205–208 (2012)

    Article  Google Scholar 

  4. Arditi, R., Berryman, A.A.: The biological control paradox. Trends Ecol. Evol. 6, 32 (1991)

    Article  Google Scholar 

  5. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  6. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio-dependent models. Am. Nat. 138, 1287–1296 (1991)

    Article  Google Scholar 

  7. Arino, O., El abdllaoui, A., Mikram, J., Chattopadhyay, J.: Infection in prey population may act as a biological control in ratio-dependent predator–prey models. Nonlinearity 17, 1101–1116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. In: Partial Differential Equations and Related Topics, Lecture Notes in Math., Vol. 446, Springer, Berlin (1975)

  9. Astrom, M.: The paradox of biological control revisited: per capita non-linearities. Oikos 78, 618–621 (1997)

    Article  Google Scholar 

  10. Banerjee, M.: Self-replication of spatial patterns in a ratio-dependent predator–prey model. Math. Comput. Model. 51, 44–52 (2010)

    Article  MATH  Google Scholar 

  11. Banerjee, M., Petrovskii, S.: Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system. Theor. Ecol. 4, 37–53 (2011)

    Article  Google Scholar 

  12. Bartumeus, F., Alonsoa, D., Catalana, J.: Self-organized spatial structures in a ratio-dependent predator–prey model. Physica A 295, 53–57 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beretta, E., Kuang, Y.: Global analyses in some delayed ratio-dependent predator–prey systems. Nonlinear Anal., T.M.A. 32, 381–408 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berryman, A.A.: The origin and evolution of predator–prey theory. Ecology 73, 1530–1535 (1992)

    Article  Google Scholar 

  15. Carr, J.: Applications of Center Manifold Theory. Springer, New York (1981)

    Book  Google Scholar 

  16. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  17. Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Pop. Biol. 56, 65–75 (1999)

    Article  MATH  Google Scholar 

  18. Deng, B., Jessie, S., Ledder, G., Rand, A., Strodulski, S.: Biological control does not imply paradox. Math. Biosci. 208, 26–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, Y.H., Li, W.T.: Global asymptotic stability of a ratio-dependent predator–prey system with diffusion. J. Comput. Appl. Math. 188, 205–227 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fan, M., Wang, Q., Zou, X.: Dynamics of a non-autonomous ratio-dependent predator–prey system. Proc. R. Soc. Edinb. A 133, 97–118 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delay. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gause, G.F.: The Struggle for Existence. Williams and Wilkins, Baltimore (1935)

    Google Scholar 

  23. Hairston, N.G., Smith, F.E., Slobodkin, L.B.: Community structure, population control and and competition. Am. Nat. 94, 421–425 (1960)

    Article  Google Scholar 

  24. Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Global analysis of the Michaelis–Menten type ratio-dependent predator–prey system. J. Math. Biol. 42, 489–506 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hsu, S.-B., Hwang, T.-W., Kuang, Y.: Rich dynamics of a ratio-dependent one prey two predator model. J. Math. Biol. 43, 377–396 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol. 61, 19–32 (1999)

    Article  Google Scholar 

  27. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator–prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey systems. Fields Inst. Commun. 21, 325–337 (1999)

    Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  30. Luck, R.F.: Evaluation of natural enemies for biological control: a behavioral evaluation. Trends Ecol. Evol. 5, 196–199 (1990)

    Article  Google Scholar 

  31. Murray, J.D.: Mathematical Biology II. Springer, Heidelberg (2002)

    Google Scholar 

  32. Okubo, A., Levin, S.: Diffusion and Ecological Problems: Modern Perspectives. Springer, Berlin (2001)

    Book  Google Scholar 

  33. Pang, P.Y.H., Wang, M.: Qualitative analysis of a ratio-dependent predator–prey system with diffusion. Proc. R. Soc. Edinb. A 133, 919–942 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peng, R., Shi, J.: Non-existence of non-constant positive steady states of two Holling type-II predator–prey systems: strong interaction case. J. Differ. Equ. 247, 866–886 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation systems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  36. Ruan, S., Tang, Y., Zhang, W.: Versal unfoldings of predator–prey systems with ratio-dependent functional response. J. Differ. Equ. 249, 1410–1435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, Y., Zou, X.: Spatiotemporal dynamics in a diffusive ratio-dependent predator-prey model near a Hopf-Turing bifurcation point. Comput. Math. Appl. doi:10.1016/j.camwa.2014.04.015

  38. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B. 237, 37–72 (1952)

    Article  Google Scholar 

  39. Wang, J., Shi, J., Wei, J.: Dyanmics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. J. Differ. Equ. 251, 1276–1304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, W., Liu, Q.X., Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator–prey system. Phys. Rev. E 75, 051913–051921 (2007)

  41. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  42. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  43. Xiao, D., Ruan, S.: Global dynamics of a ratio-dependent predator–prey systems. J. Math. Biol. 43, 221–290 (2001)

    Article  MathSciNet  Google Scholar 

  44. Xiao, D., Li, W.: Stability and bifurcation in a delayed ratio-dependent predator–prey system. Proc. Edinb. Math. Soc. 45, 205–220 (2003)

    MathSciNet  Google Scholar 

  45. Xu, R., Davidson, F.A., Chaplain, M.A.J.: Persistence and stability for a two-species ratio-dependent predator–prey system with distributed time delay. J. Math. Anal. Appl. 269, 256–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, J., Li, W., Yan, X.: Hopf bifurcation and turing instability in spatial homogeneous and inhomogeneous predator–prey models. Appl. Math. Comput. 218, 1883–1893 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author is supported by the State Key Program of National Natural Science of China (No. 11032009), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Fundamental Research Funds for the Central Universities, and the Program for New Century Excellent Talents in University (NCET-11-0385); and the second author is partially supported by Natural Science and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingfu Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zou, X. Bifurcation analysis of a diffusive ratio-dependent predator–prey model. Nonlinear Dyn 78, 49–70 (2014). https://doi.org/10.1007/s11071-014-1421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-014-1421-2

Keywords

Navigation